
2018 IEEE INTERNATIONAL WORKSHOP ON MACHINE LEARNING FOR SIGNAL PROCESSING, SEPT. 17–20, 2018, AALBORG, DENMARK

DETECTION OF CUT-POINTS FOR AUTOMATIC MUSIC REARRANGEMENT

Daniel Stoller
Queen Mary University of London
d.stoller@qmul.ac.uk

Vincent Akkermans
MXX Music

vincent@mxxmusic.com

Simon Dixon
Queen Mary University of London
s.e.dixon@qmul.ac.uk

ABSTRACT

Existing music recordings are often rearranged, for example
to fit their duration and structure to video content. Often an
expert is needed to find suitable cut points allowing for im-
perceptible transitions between different sections. In previous
work, the search for these cuts is restricted to the beginnings
of beats or measures and only timbre and loudness are taken
into account, while melodic expectations and instrument con-
tinuity are neglected. We instead aim to learn these features
by training neural networks on a dataset of over 300 popular
Western songs to classify which note onsets are suitable en-
try or exit points for a cut. We investigate existing and novel
architectures and different feature representations, and find
that best performance is achieved using neural networks with
two-dimensional convolutions applied to spectrogram input
covering several seconds of audio with a high temporal reso-
lution of 23 or 46 ms. Finally, we analyse our best model us-
ing saliency maps and find it attends to rhythmical structures
and the presence of sounds at the onset position, suggesting
instrument activity to be important for predicting cut quality.

1. INTRODUCTION

Rearranging an existing recording of a music piece has many
applications, such as creating remixes or adapting background
tracks to video content. Normally, the global structure of the
music piece is changed, while leaving other aspects unaltered.
This process can be modeled as selecting pairs of entry and
exit cut positions so that switching from exit to entry cuts
yields good-sounding transitions between different sections.

But good transition quality requires fulfilling the lis-
tener’s expectations regarding instrumentation, rhythm and
many other musical aspects, and so finding suitable cut-
points is time-consuming even for professional audio engi-
neers. Therefore, we propose an automatic algorithm, so cut-
points can be matched quickly by hand or automatically ac-
cording to their position in the bar and the musical segment,
paving the way for automatic music editing that saves time
and is easy to use.

In contrast to previous approaches that assume features
such as timbre or loudness are sufficient in predicting tran-
sition quality, we train classifiers directly on annotated entry
and exit cuts to learn the relevant features from the data, and
find that other aspects such as note onsets are also important.

This work was partially funded by EPSRC grant EP/L01632X/1.

2. RELATED WORK

To find suitable cut points, methods originally developed
for image retargeting such as tiling, stitching [1] and seam-
carving [2] were transferred to the music domain. How-
ever, these combine very short excerpts, ignoring the higher-
level structure of music such as melodic motifs and thus
often creating annoying repetitions [3]. Therefore, music-
specific methods have been proposed, such as a multi-scale
approach [4], which was improved upon with a genetic al-
gorithm [5] and then adapted to only consider beginnings of
whole measures as cut points [6]. A good performance of
these systems was only shown for dance music featuring a
strong and regular pulse, but is unlikely to transfer across
many music genres.

Similar work [3] is not only focused on dance music and
offers extra functionality, such as providing infinite music
streams. The author uses the musical content between two
consecutive beats as atomic ”building blocks” that can be con-
catenated to form new pieces, and compute a pair-wise tim-
bral similarity to determine the best transitions between them.
However, cuts between different counts in a measure can oc-
cur because the position of downbeats is ignored.

All of the above approaches employ a manually defined
measure to find suitable transitions. Because the underlying
musicological phenomenon is not well understood, this def-
inition is difficult and leads to measures that lack robustness
and do not accurately take into account all relevant aspects
of transition quality [3]. Instead, we apply deep learning to
discover the relevant factors from a hand-annotated dataset
of over 300 popular Western songs to derive a more accurate
measure of transition quality. We also gain insight into what
makes a good cut by hyper-parameter optimisation and model
visualisation, revealing the influence of different frequency
ranges, temporal resolutions and temporal context, and the
importance of instrument activity and the amount of acoustic
energy as relevant factors.

3. APPROACH

In [3–5] music rearrangement is framed as an optimisation
problem involving the search for a set of pairs of cut points, so
that the transitions resulting from the cut pairs are minimally
perceptible. The transition quality is estimated depending on
the combination of entry and exit cut.

In contrast, we aim to focus on finding entries and exits

978-1-5386-5477-4/18/$31.00 c©2018 IEEE

that produce good transitions regardless of which exit or en-
try they are paired with. Internal listening experiments have
demonstrated that this can still produce good transitions, pro-
vided the cut candidate selection is more restrictive. As an
exception to the above, we only allow transitions preserving
the position in the metrical structure due to the listener’s sen-
sitivity to violations of metrical expectations.

We will focus on finding transitions between musical sec-
tions and therefore train classifiers to detect entries and exits
near section boundaries using the local audio context as input.
With suitable annotations, our approach could be generalized
to not require structural segmentation information.

3.1. Dataset

Our dataset contains 311 popular Western songs in CD quality
with a mostly modern pop style. The musical structure of each
song is annotated with segments serving a musical function,
such as verse and chorus. In addition, it contains automat-
ically detected beat and onset positions that were manually
corrected, as well as time signatures and downbeat positions.

We restrict our search for cut candidates to note onsets,
which were manually annotated by an expert as entries or ex-
its, or both, so that any combination of entry and exit pro-
duces a suitable transition. Note that previous work employed
stricter restrictions, in which only beat positions [3–5] or even
only beginnings of measures [6] were considered. This re-
sults in 28108 training examples, of which 19049 are entries
and 19747 are exits.

For an automatic classification of the entries and exits an-
notated in the dataset, we have to generate negative examples
from the songs in the dataset by carefully sampling onset po-
sitions. We found that over 99% of cut-points to are located
between 8 beats before and 4 beats after their nearest sec-
tion boundary. By relying on the structural segmentation, we
thus simplified the task to only classifying onsets near sec-
tion boundaries. Therefore, we sampled one negative exam-
ple randomly from onsets in the 8+4 beat interval around each
section boundary of each exit and entry cut, yielding a total
of 38796 examples.

3.2. Preprocessing and feature extraction

To account for varying loudness levels between songs, we first
perform loudness matching using ReplayGain [7] with a low
reference level, so most songs are reduced in volume. In the
few cases where amplification is required, we prevent signal
distortions by applying look ahead limiting.

The feature sets introduced in Section 3.4 were extracted
on an absolute and a beat-aligned timescale. Each feature co-
efficient was normalised to have zero mean and unit standard
deviation across the dataset to aid model training.

3.3. Methods and context windows

Because we assume cuts can be judged independently, our
models classify onsets individually based on audio excerpts

with a length of twin seconds, which are centered on the re-
spective onset. To investigate the importance of long temporal
dependencies, we use 20, 10, 4, 2, and 1 seconds for twin.

We also consider different time resolutions to investigate
the trade-off between feature dimensionality and the tempo-
ral precision required for classification. For the highest reso-
lution, extraction is performed with frames of 46 ms duration
and 50% overlap, resulting in a hop size (resolution) of 23 ms.
Lower temporal resolutions tres ∈ {46, 92, 184} are obtained
by repeated average pooling across time with a factor of two.

In addition to features aligned with respect to absolute
time, we consider a beat-aligned feature covering a vary-
ing number of beats kwin with kres frames per beat, since
we hypothesise that the resulting invariance to musical tempo
changes could help with cut detection. The beat-aligned fea-
tures are computed by averaging the features of highest res-
olution based on absolute time to yield kres ∈ {8, 4, 2} non-
overlapping frames per beat.

3.4. Feature sets

We used three different types of features. The handcrafted
feature set is a compact, 36-dimensional representation de-
signed to reduce overfitting risk and training time, and
covers timbral, melodic, and metric aspects by combin-
ing three features with 12 feature coefficients each. Tim-
bral quality is described by Mel-frequency cepstral coeffi-
cients (MFCCs), including the 0-th coefficient. Chroma fea-
tures are extracted MIR Toolbox [8] to describe harmonic
and melodic relationships, to complement the mostly pitch-
invariant MFCCs. Finally, the tempogram [9] with a win-
dow of 4 seconds, describes rhythmic periodicities on multi-
ple metrical levels.

To enable feature learning, we also employ two spectro-
gram representations as feature input. For our second feature
set we use the Gammatone (GT) filterbank [10], because its
logarithmic frequency scale reflects human perception more
accurately than other representations such as FFTs. We use
75 filters with center frequencies from 60 Hz to 15.8 Khz.

The third feature set is motivated by the fact that funda-
mental frequencies of notes are hard to resolve with heavily
overlapping, broad GT filters, although melodic and harmonic
relationships may be needed for classification. Thus we com-
pute the constant-Q transform with 12 bins per octave and 8
octaves spanning frequencies between 55 and 14.08 KHz.

3.5. Classification

For classification, we divide our problem into two binary de-
cision problems: distinguishing entries from negative exam-
ples and exits, and distinguishing exits from negative exam-
ples and entries. Separate models for each problem were opti-
mised independently during the experiments from section 4 to
account for the potentially different decision making required
for optimal performance. We minimise the cross entropy be-
tween the output and the ground truth probabilities.

We use neural networks in varying configurations with
rectified linear units (ReLU) [11]. In initial experiments,

3x3 Convolution

2x2 Max-Pooling

2x2 Up-Convolution

Copy and crop

Hidden Layer

Output Layer

Feature input

32 32

64 64

128

128 64

64 32 321

Fig. 1. The adapted U-Net architecture

we employed feed-forward neural networks of varying sizes,
but performance was poor due to overfitting. Therefore, we
turned to convolutional models.

Hypothetically, relevant features are local and stationary
in time, meaning a local feature detector should be applied
across the whole time dimension. After downsampling the re-
sulting feature responses, we can repeat this process to form
more complex and abstract features covering longer time-
spans. Thus we use a neural network with one-dimensional
convolutions (1D-CNN). Together with Max-pooling without
overlap by a factor of two and Dropout [12], this reduces the
risk of overfitting. We use a two alternating convolution and
pooling layers followed by one additional convolution and fi-
nally a fully connected layer with a softmax function.

We also employ a CNN with two-dimensional convolu-
tion (2D-CNN) that achieved great successes in image recog-
nition tasks [13] to test whether relevant features for our task
are not only stationary in time but also across the frequency
range. The architecture is equivalent to the 1D-CNN, except
that the convolutional and pooling filters are two-dimensional,
operating across the time and frequency axis. We do not use
the handcrafted feature set as input for this model as the filters
should not be the same across all three features.

Max-pooling the features, especially along the time di-
mension, could be detrimental, as a certain temporal precision
may be required for cut detection. We propose an extended
architecture based on the U-net [14], a system for biomedical
image segmentation. They avoid the problematic trade-off be-
tween localisation accuracy and the amount of context in tra-
ditional CNNs by augmenting them with an “upscaling” path-
way, where the small, high-level feature maps are upscaled
and combined with the lower-level feature maps to integrate
detailed, local with abstract, global features.

We make two changes to the U-net model to adapt it to
our problem, resulting in the model shown in Figure 1.

Firstly, the desired output in our case is a class label and
not a stack of two-dimensional feature maps. Therefore we
feed the activations from the final set of feature maps into
a fully connected layer with Dropout, followed by softmax
classification. Secondly, the convolutions in the model cause
the final feature maps to be reduced to a centre piece of the

input, because not enough context is available to compute the
high-level features near the corners. Particularly local low-
frequency information at the input “border” can however be
important for our classification problem. As a solution, we
apply zero-padding to the input so that the final feature map
has the dimensions of the original input.

4. EXPERIMENTAL SETUPS AND RESULTS

We used 60%, 20% and 20% of all samples for the training,
validation and test set respectively. All samples from the same
song were assigned to the same subset to ensure the model has
to generalise to unknown songs. The models were developed
using Theano [15] and an NVIDIA GeForce Titan X GPU.

Training is performed by stochastic gradient descent using
Nesterov-Momentum [16] with a weight of 0.9, mini-batches
of size 200, a learning rate of 0.01, and L2 regularisation. To
prevent overfitting, we stop training in case the loss on the
validation set does not decrease by at least 0.5% for 5 epochs.

Our dataset contains more negative than positive exam-
ples, as onsets annotated as only entries are also counted as
negative examples for the task of detecting exits and vice
versa. Therefore we use the balanced classification rate
(BCR) as evaluation metric, which takes the average of the
accuracies for positive and for negative samples, weighted by
their occurrence [17].

The mean BCR on the test set for each configuration will
be denoted in parentheses for brevity. Configurations will be
analysed by keeping all parameters but one fixed and then per-
forming a paired Wilcoxon test to measure if the performance
changes when only varying one parameter.

4.1. Experiment 1 - 1D-CNN

Because hyperparameter optimisation is prohibitively slow,
we constrain some hyperparameters: As we found 20, 2 and
1 seconds of audio context twin and temporal resolutions tres
over 46 ms to perform worse on average in initial experi-
ments, we explore 4 and 10 seconds for twin and 23 and 46
ms for tres. We use a regularisation strength of 0.01, along
with a hidden layer with N1

hidden = 200 neurons. Further-
more, we use a pooling shape P 2

shape = (2, 1) for the second
pooling layer to reduce model complexity. We also use the
same filter shape Cshape for all three convolutional layers, but
vary the number of filters Ci in each layer i.

The results show that convolving spectral filters across
time is beneficial, as the 1D-CNN model performs better
than the fully connected models with a mean BCR of 0.610
over all configurations. On average, we found no significant
difference between using 10 or 4 seconds as context win-
dow size twin. However, on average a temporal resolution of
tres = 23 ms achieved slightly higher performances (mean
BCR of 0.617) compared to tres = 46 ms (0.605), suggest-
ing cuts could be distinguished by small timing differences.
The GT features performed better (0.643) than the CQT fea-
tures (0.600) by a large margin, and both superseded the hand-
crafted combination (0.587) perhaps due to their higher di-

Parameter List of settings
Feature set Handcrafted, GT, CQT
twin 10, 4
tres 23, 46
(C1, C2, C3) (32, 64, 128); (64, 128, 256)
Cshape (2, F); (4, F)
P 1

shape (1, 1); (2, 1)

Table 1. Parameters varied in experiment 1. F is the number
of feature dimensions for each time point in the input feature.
Filter shapes are denoted as tuples of their size in the time and
feature dimension, in that order.

mensionality. On the other hand, the number and the shape of
filters did not make any significant difference.

4.2. Experiment 2 - 2D-CNN

Three different filter shapes are tested - a small filter, a “tall”
filter that captures more context along the frequency dimen-
sion, and a “wide” filter that captures more context along the
time dimension, to investigate the extent of locality of the
relevant features along the two dimensions, similar to [18].
We introduce a fixed pooling factor of 2 in the frequency di-
mension in both pooling layers, while retaining the option be-
tween not pooling along the time dimension and pooling with
a factor of two as from experiment 1 in section 4.1 to keep the
hyper-parameter space small.

Because the GT features performed best in experiment 1,
we also include the beat-aligned GT features in this experi-
ment to test whether introducing tempo invariance brings fur-
ther improvement. The average BCR in this experiment was
0.656 and thus even better than in experiment 1 from sec-
tion 4.1. Perhaps 1D filters detecting the same pattern at dif-
ferent frequencies can be replaced by one 2D filter, reducing
the number of parameters without loss of expressivity.

For absolute-time features, varying the amount of context
twin between 10 and 4 seconds as well as the temporal resolu-
tion tres between 23 and 46 ms led to small differences.

For the beat-aligned GT features, including kwin = 12
beats as context leads to slightly better performance (0.663)
than only including 6 beats (0.650). While the performance
using kres = 8 frames (0.663) or kres = 4 frames (0.660) per
beat did not significantly differ, in both cases it was better
than only using 2 frames (0.648).

We will compare the GT features based on absolute and
musical time despite their different parameters, by comparing
the network configurations that led to the best performance
for each feature. Applying the pair-wise Wilcoxon test shows
that on average, GT features aligned to beats (0.678) slightly
outperform those based on absolute time (0.670). However,
this effect is small, suggesting that the model builds time-
invariant features itself, or that cut quality depends less on
rhythmical aspects than expected.

The CQT feature performs slightly worse (0.653) than the
GT feature (0.658), but this effect is much weaker than in the
previous experiment in section 4.1.

Parameter List of settings
Feature set GT, Beat-aligned GT, CQT
twin 10, 4
tres 23, 46
kwin 12, 6
kres 8, 4, 2
(C1, C2, C3) (32, 64, 128); (64, 128, 256)
Cshape (3, 3); (3, 9); (9, 3)
P 1

shape (1, 2); (2, 2)

Table 2. Parameters varied in experiment 2

Varying the number of filters does not change perfor-
mance, while the smallest filter shape (3, 3) performed
slightly better than the wide and the tall filter. Finally, a pool-
ing with shape (1, 2) performs worse (0.65) than the shape
(2, 2) (0.66), possibly due to the reduction in parameters.

4.3. Experiment 3 - Adapted U-Net

Because the large size of the adapted U-net leads to long
training times, we use the configuration shown in Figure 1
and only vary the context window twin ∈ {10, 4} and tem-
poral resolution tres ∈ {23, 46} of the GT and CQT features.
Furthermore, we use the beat-aligned GT features covering
kwin ∈ {12, 6} beats with kres ∈ {8, 4, 2} per frame.

Despite the theoretical appeal of the adapted U-Net, it did
not provide better accuracies than the 2D-CNN model from
Section 4.2 with an average BCR of 0.637. Potential benefits
of this model in the form of more easily achieved high tempo-
ral precision might be counteracted by the higher model ca-
pacity which increases the risk of overfitting to our relatively
small dataset. Perhaps most importantly, as we did not per-
form any hyper-parameter optimisation, other configurations
could have outperformed the 2D-CNN, but we were unable to
test this due to time constraints.

4.4. Best performing model

The best performances were obtained by 2D-CNNs from ex-
periment 2 in section 4.2. Over a ten-fold cross-validation,
we achieve a mean BCR of 0.654 with a standard deviation
of 0.011 on the exit task, and a mean BCR of 0.692 with a
standard deviation of 0.030 on the entry task.

5. MODEL ANALYSIS

In this section, we will investigate what our best-performing
model learnt about the cut detection problem. Since it takes
beat-aligned GT features as input, whose 75 frequency bins
have centre frequencies ranging from 60 Hz to 15.8 KHz, as
input, we can determine the performance after removing the
lower or higher ends of the frequency range. We find that
keeping larger frequency ranges generally lead to better per-
formance, and that the middle frequencies are slightly more
important for cut detection than high or low frequencies.

Fig. 2. Onset correctly identified as not being an entry.

To better understand what features our model uses for
cut-detection, we can select examples from the dataset and
compute the gradient of the network’s output with respect to
the input. Visualising the gradient in the form of a saliency
map reveals the influence of each part of the input on the
classification outcome. To compute the saliency maps, we
apply guided backpropagation [19] using the implementa-
tion by Schlueter [20]. For a given example x, we take the
network’s class prediction f(x) and compute ∂f

∂xi
for all in-

put dimensions xi. We generate a positive, negative, and
absolute saliency map visualising the values max{ ∂f

∂xi
, 0},

−min{ ∂f
∂xi

, 0} and | ∂f∂xi
|, respectively. We will show and in-

terpret the results for a selection of examples below, in which
the beat-aligned GT features along with the best-performing
model is used, and provide conclusions from observing a
larger number of examples.

In the true negative example shown in Figure 2, the music
vocals present at the onset position at time frame 45 and fre-
quency bin 60 are used by the model to determine the negative
class, indicated by the high positive saliency at this point. The
negative saliency map shows that with more acoustic presence
before the onset, it could have misidentified as an entry. In
general, the model for entries learnt that the amount of acous-
tical activity tends to be low before and high after an entry
cut, whereas the exit model learnt the opposite – a rule also
mentioned and used by the annotator.

However, Figure 3 shows this rule is followed too strictly:
Although within a gap of the vocals, exiting here would in-
terrupt an ongoing lyrical line mid-sentence. This suggests
the exit model has an insufficient understanding of the musi-
cal phrasing as well as lyrical content that is required to deal
with these more complicated cases. Judging by the regular
vertical “stripes” in the positive and negative saliency map,
rhythmical structure appears to be captured by the model.

Fig. 3. Onset incorrectly identified as exit.

6. ANALYSIS OF INCORRECT PREDICTIONS

To investigate error sources of the model, we let the anno-
tator evaluate its predictions. We focused on analysing false
positive errors, as transition quality is more important than
having many possible transitions. We hypothesised that many
false positive predictions might be true positives, as annota-
tors tend to annotate only a portion of all suitable entries and
exits, because only a limited number are needed to provide
enough transitions for music rearrangement.

For the study, we generated predictions from the best
model in section 4.4 for five randomly selected songs from the
test set. From all false positive predictions, a random selec-
tion of 65 onsets was given to the annotator to decide whether
and why the annotation is still considered correct or not, with
“yes”, “no”, and “maybe” as possible answers.

Overall, our hypothesis is supported by the fact that 22
(33.8%) onsets were accepted as true positive predictions, and
the annotator was undecided in 5 cases (7.7%). These inac-
curacies in annotation imposes a limit on the achievable per-
formance of any classifier trained on this dataset. Analysis
of the other false positives however reveals that many are not
suitable since they disrupt vocal phrases, indicating the model
has not learnt to detect vocals reliably.

7. CONCLUSIONS

In this paper, we applied neural networks to the problem of
finding cut points in music for the purpose of music rear-
rangement. While convolutional filters improve performance,
adding an upscaling pathway to integrate information at dif-
ferent levels of abstraction did not increase accuracy further.

We found a GT spectrogram of 4 to 10 seconds with 23
to 46 ms of resolution to perform best, which outperforms the
CQT and demonstrates the importance of high temporal reso-
lution. Visualisations of our models highlight the relevance of
instrument activity as a factor. Furthermore, the model learns

that acoustic energy tends to be low before and high after an
entry point, and the opposite at exit points.

Because transition quality is inherently subjective and
hard to define, we found a large number of missing positive la-
bels in the dataset, and suggest measuring the inter-annotator
agreement in future work.

As previous approaches [3, 5] focus on transition quality
as an interaction between entry and exit, they could be inte-
grated into our approach to provide a way of choosing the best
transitions from the detected entries and exits.

8. REFERENCES

[1] J. R. Parker and B. Behm, “Creating audio tex-
tures by example: tiling and stitching,” in Acous-
tics, Speech, and Signal Processing, 2004. Proceed-
ings.(ICASSP’04). IEEE International Conference on.
IEEE, 2004, vol. 4, pp. iv–317.

[2] S. Avidan and A. Shamir, “Seam carving for content-
aware image resizing,” in ACM Transactions on graph-
ics (TOG), 2007, vol. 26, p. 10.

[3] S. Wenner, “Music retargeting and synthesis,” M.S. the-
sis, Swiss Federal Institute of Technology Zurich, 2012.

[4] S. Wenger and M. Magnor, “Constrained example-
based audio synthesis,” in Proceedings of the Inter-
national Conference on Multimedia and Expo (ICME),
2011, p. 6.

[5] S. Wenger and M. Magnor, “A genetic algorithm for
audio retargeting,” in Proceedings of ACM Multimedia
(ACMMM), 2012, pp. 705–708.

[6] J. Tauscher, S. Wenger, and M. Magnor, “Audio resyn-
thesis on the dancefloor: A music structural approach,”
in Proceedings of Vision, Modeling and Visualization
(VMV), 2013, p. 8.

[7] David Robinson, “Replay gain - a proposed standard,”
http://wiki.hydrogenaud.io/index.php?
title=ReplayGain_1.0_specification,
2001, Accessed: 2017-04-21.

[8] O. Lartillot, P. Toiviainen, and T. Eerola, “A mat-
lab toolbox for music information retrieval,” in
Data Analysis, Machine Learning and Applications,
C. Preisach, H. Burkhardt, L. Schmidt-Thieme, and
Reinhold Decker, Eds., Studies in Classification, Data
Analysis, and Knowledge Organization, pp. 261–268.
Springer Berlin Heidelberg, 2008.

[9] P. Grosche and M. Müller, “Extracting predominant lo-
cal pulse information from music recordings,” IEEE
Transactions on Audio, Speech, and Language Process-
ing, vol. 19, no. 6, pp. 1688–1701, 2011.

[10] RD Patterson, Ian Nimmo-Smith, John Holdsworth, and
Peter Rice, “An efficient auditory filterbank based on the
gammatone function,” in a meeting of the IOC Speech
Group on Auditory Modelling at RSRE, 1987, vol. 2.

[11] V. Nair and G. E. Hinton, “Rectified linear units im-
prove restricted boltzmann machines,” in Proceedings
of the 27th International Conference on Machine Learn-
ing (ICML-10), 2010, pp. 807–814.

[12] G. E. Hinton, N. Srivastava, Alex Krizhevsky, Ilya
Sutskever, and Ruslan R Salakhutdinov, “Improving
neural networks by preventing co-adaptation of feature
detectors,” arXiv preprint arXiv:1207.0580, 2012.

[13] Alex Krizhevsky, Ilya Sutskever, and Geoffrey E. Hin-
ton, “Imagenet classification with deep convolutional
neural networks,” in Advances in Neural Information
Processing Systems 25, F. Pereira, C. J. C. Burges,
L. Bottou, and K. Q. Weinberger, Eds., pp. 1097–1105.
Curran Associates, Inc., 2012.

[14] O. Ronneberger, P. Fischer, and T. Brox, “U-net: Convo-
lutional networks for biomedical image segmentation,”
in International Conference on Medical Image Com-
puting and Computer-Assisted Intervention. Springer,
2015, pp. 234–241.

[15] Theano Development Team, “Theano: A Python frame-
work for fast computation of mathematical expressions,”
arXiv e-prints, vol. abs/1605.02688, May 2016.

[16] Y. Nesterov, “A method of solving a convex program-
ming problem with convergence rate o (1/k2),” in Soviet
Mathematics Doklady, 1983, vol. 27, pp. 372–376.

[17] Gael De Lannoy, Damien François, Jean Delbeke, and
Michel Verleysen, “Weighted svms and feature rel-
evance assessment in supervised heart beat classifica-
tion,” in International Joint Conference on Biomedical
Engineering Systems and Technologies. Springer, 2010,
pp. 212–223, balanced classification rate.

[18] Jordi Pons, Olga Slizovskaia, Rong Gong, Emilia
Gómez, and Xavier Serra, “Timbre analysis of music au-
dio signals with convolutional neural networks,” arXiv
preprint arXiv:1703.06697, 2017.

[19] J. T. Springenberg, A. Dosovitskiy, T. Brox, and
M. Riedmiller, “Striving for simplicity: The all con-
volutional net,” in arXiv:1412.6806, also appeared at
ICLR 2015 Workshop Track, 2015.

[20] J. Schlüter, “Saliency maps and guided backprop-
agation,” https://github.com/Lasagne/
Recipes/blob/master/examples/
Saliency%20Maps%20and%20Guided%
20Backpropagation.ipynb, 2015, Accessed:
2017-04-21.

