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Abstract

While deep learning (DL) models have achieved impressive results in settings

where large amounts of annotated training data are available, overfitting often

degrades performance when data is more limited. To improve the generalisation

of DL models, we investigate “data-driven priors” that exploit additional unla-

belled data or labelled data from related tasks. Unlike techniques such as data

augmentation, these priors are applicable across a range of machine listening

tasks, since their design does not rely on problem-specific knowledge.

We first consider scenarios in which parts of samples can be missing, aiming to

make more datasets available for model training. In an initial study focusing on

audio source separation (ASS), we exploit additionally available unlabelled music

and solo source recordings by using generative adversarial networks (GANs),

resulting in higher separation quality. We then present a fully adversarial

framework for learning generative models with missing data. Our discriminator

consists of separately trainable components that can be combined to train the

generator with the same objective as in the original GAN framework. We apply

our framework to image generation, image segmentation and ASS, demonstrating

superior performance compared to the original GAN.

To improve performance on any given MIR task, we also aim to leverage

datasets which are annotated for similar tasks. We use multi-task learning (MTL)

to perform singing voice detection and singing voice separation with one model,

improving performance on both tasks. Furthermore, we employ meta-learning

on a diverse collection of ten MIR tasks to find a weight initialisation for a

“universal MIR model” so that training the model on any MIR task with this

initialisation quickly leads to good performance.

Since our data-driven priors encode knowledge shared across tasks and

datasets, they are suited for high-dimensional, end-to-end models, instead of small

models relying on task-specific feature engineering, such as fixed spectrogram

representations of audio commonly used in machine listening. To this end, we

propose “Wave-U-Net”, an adaptation of the U-Net, which can perform ASS

directly on the raw waveform while performing favourably to its spectrogram-

based counterpart. Finally, we derive “Seq-U-Net” as a causal variant of Wave-

U-Net, which performs comparably to Wavenet and Temporal Convolutional

Network (TCN) on a variety of sequence modelling tasks, while being more

computationally efficient.
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Chapter 1

Introduction

1.1 Motivation

The deep learning revolution has initiated an immense amount of progress in many

fields where machine learning is applied, such as computer vision [Krizhevsky

et al., 2012], robotics [Sünderhauf et al., 2018] and audio processing [Graves

et al., 2013]. However, due to the data-driven nature of current DL models,

progress has been much more pronounced in settings where large amount of

high-quality, labelled data is available, such as object recognition [Krizhevsky

et al., 2012, Deng et al., 2009].

In areas where labelled data is more limited due to labelling cost or copyright-

related legal restrictions on data sharing, such as medical imaging, music in-

formation retrieval or wildlife detection from audio signals [Morfi, 2019], deep

learning models tend to overfit the training set and generalise poorly to unseen

test data. To improve generalisation, prior knowledge is often incorporated in

one or more ways. One way is to use more specialised architectures for deep

neural networks (DNNs), such as convolutional neural networks (CNNs), which

have a comparatively low number of parameters due to their sparse connectivity

pattern between neurons. Another approach involves hand-crafting feature sets

that can be used as input to the model instead of the raw sample data. However,

with both of the above approaches a glass ceiling is quickly reached: integrating

prior knowledge into DNNs is difficult since it is often a challenge to understand

what each component of a DNN is doing [Ribeiro et al., 2016], and construct-

ing suitable features requires deep domain knowledge and yields diminishing

returns.

Even though data specifically prepared for a certain task is often limited,

additional data is usually available that is related to the task in some way. This

includes unlabelled data similarly distributed to the task dataset, but also labelled
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datasets normally used for other tasks. This also applies to music information

retrieval, where unlabelled music is available on very large scales [Bogdanov

et al., 2019], and many related tasks exist [IMIRSEL, 2020] such as instrument

transcription, melody estimation and beat detection – correlations between the

labels from different tasks mean that correctly predicting labels for one task

is also helpful for solving the other tasks. At the same time, the potential of

multi-task [Caruana, 1998] and transfer learning [Pan and Yang, 2009] to exploit

this additional data is still largely untapped in the MIR field.

The immense success of “end-to-end” DL models that process the input

directly over approaches based on feature engineering also indicate the superiority

of learning features from data over hand-crafting features in an attempt to encode

problem knowledge. Compared to fields such as computer vision, where images

are processed directly by DNNs, most DL approaches in machine listening

still make use of spectral audio features [Sigtia et al., 2015, Grill and Schlüter,

2015, Huang et al., 2014], such as the magnitudes of a Short-Time Fourier

Transform. The same applies to models that output audio signals, e.g. audio

source separation (ASS) [Uhlich et al., 2015] or audio generation [Vasquez and

Lewis, 2019]. In that case, final audio signals have to be recovered from the

predicted spectrograms’ magnitudes, a process that is only approximate and

can produce output artifacts. In light of the above, DNNs that process audio

signals in an end-to-end fashion would be desirable. Instead of employing a

specific “hand-crafted” prior on how low-level representations of sound should be

computed, they use more parameters that are all optimised towards the training

objective. We hypothesise these models should achieve better performance when

used in combination with additional, powerful regularisers (priors) driven by

additionally available data (as discussed earlier) than using hand-crafted features

that do not improve with such extra data. Furthermore, end-to-end architectures

can be used to develop “universal” models that can generalise across multiple

different tasks due to their flexibility – a prior on their parameters and therefore

the space of input features extracted in each layer can be constructed using the

additionally available data using methods such as multi-task learning [Caruana,

1998], self-supervised pre-training [Devlin et al., 2019] or meta-learning [Finn

et al., 2017]. On the other hand, models using a fixed set of input features

designed for one task tend to perform poorly on other tasks that require different

features.

1.2 Aim

This work aims to contribute towards the development of deep learning models

that generalise well from only limited amounts of labelled data. To this end,
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we investigate approaches that leverage additional data from other sources to

regularise DL models and thereby prevent overfitting to the task’s training

set. Experimental evaluation of our approaches will focus on machine listening

applications and music information retrieval in particular, but other application

domains are also investigated since our approaches are mostly applicable across

different domains.

Models should be flexible in the presence of missing data, i.e., should also be

able to learn from incomplete observations, since this effectively increases the

size of the available training dataset. In audio source separation for example,

DL models are usually trained in a supervised fashion to estimate audio sources

from an audio mixture, but this requires multi-track data that yields mixtures

together with their sources, which is often limited. However, additional datasets

with individual mixtures or source recordings might be available. Integrating

these datasets can be achieved when framing the problem as a missing data

scenario in which samples from these datasets are only partially observable.

Another approach to obtain “data-driven regularisation” as outlined above

is multi-task learning, where a model is also required to perform additional

tasks that are assumed to be related to the main task of interest. For example,

detecting the presence of musical instruments and recovering their corresponding

audio signals from a mixture (separation) are closely related tasks since the

target labels of both are correlated – when an instrument labelled as not active

at a particular time, it should be near-silent. Therefore, leveraging multiple

datasets each featuring annotations for a different tasks by including them into

model training is a promising research direction.

Finally, we develop end-to-end neural architectures for processing and gener-

ating audio signals in an end-to-end fashion. These architectures can pave the

way towards models that are more universally applicable across different audio

processing tasks, which enable the use of multi-task learning and other data-

driven regularisation methods we investigate in this thesis. In current machine

listening approaches, model inputs normally vary between tasks due to task-

specific feature engineering – for example, audio source separation is normally

performed on a spectrogram representation, but for many audio detection tasks,

the spectrogram is often compressed further before being input to a statistical

model. We also investigate architectures which can be minimally adapted to

work on other sequential data such as text and symbolic music, which could

also enable transfer of models between tasks with different modalities (input

domains). Since such data is often very high-dimensional (meaning sequences

are often very long, such as raw audio), maximising the computational efficiency

of such models is another important goal and so is another focus of our work in

this direction.
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1.3 Thesis structure

We describe the structure of this thesis in the following by briefly describing the

content of each main chapter.

Chapter 2 describes required background knowledge and previous work in

areas related to this thesis.

Chapter 3 describes novel methods based on generative adversarial networks

(GANs) for a missing data scenario, which are applied to problems such as

audio source separation and image segmentation.

Chapter 4 introduces approaches which use related tasks as well as unlabelled

data as a model prior to improve generalisation capability, in the context

of MIR tasks.

Chapter 5 details new CNN models for temporal data that achieve high com-

putational efficiency and good generalisation capability even with very

high resolution (= high-dimensional) input.

Chapter 6 concludes the thesis, summarising the work, discussing its limita-

tions and considering prospects for further research.

1.4 Contributions

The novel contributions of this thesis are:

• Chapter 3: We present novel GAN-based methods for missing data and

semi-supervised learning scenarios. Our first method in Section 3.2 com-

bines a standard supervised learning objective with a GAN-based unsu-

pervised constraint in the context of audio source separation. Compared

to pure supervised training on a multi-track dataset, we can improve

performance by leveraging additional solo source recordings.

In Section 3.3 we further develop the method into a fully adversarial learning

framework for this type of missing data scenario, embedding it into the

standard GAN framework [Goodfellow et al., 2014]. We apply the method

to source separation, image generation and image segmentation and find

that including additional incomplete observations improves performance

for each task.

• Chapter 4: We present an initial study in Section 4.2 aiming to exploit

the shared structure between multiple MIR tasks. Specifically, we train a

model to perform both singing voice separation and singing voice detection
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at the same time, using a multi-task learning approach. The resulting

model performs better at both tasks compared to training separate models

on each task.

In our second study in Section 4.3, we apply meta-learning on a set of

related tasks to obtain a weight initialisation that leads to better and

quicker generalisation when using it for training on new, unseen tasks than

a random initialisation. We do this in the context of music information

retrieval, where MIR tasks are often related and only small to medium

amounts of labelled data exist. We find that results are more mixed in

this setting, where performance sometimes drops when the meta-learned

weight initialisation is used. However, in some cases performance increases

quite substantially, suggesting the presence of exploitable task similarities,

but also a strong dependency of our approach on the selection of training

and test tasks.

• Chapter 5: In Section 5.2, we present an end-to-end CNN architecture

for audio source separation called the “Wave-U-Net” that improves over

spectrogram-based separation by taking the audio input phase into ac-

count and avoids artifacts occurring when reconstructing spectrogram

magnitudes.

In Section 5.3, we adapt this architecture to be auto-regressive by making

convolutions causal to make it applicable to sequence modelling tasks,

obtaining the “Seq-U-Net”. We compare to two state-of-the-art sequence

models, temporal convolutional networks (TCN) [Bai et al., 2018] and

Wavenet [van den Oord et al., 2016] on text, symbolic audio and raw

audio generation tasks and find it delivers similar performance while using

significantly less memory and computation time.
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Chapter 2

Background

Approaches investigated in this thesis are almost exclusively based on deep

learning, and so we will give a brief introduction to deep learning in the following

Section 2.1. Then we will describe common applications in machine listening in

Section 2.2. A more detailed overview of music information retrieval and audio

source separation is given in Sections 2.2.1 and 2.2.2, since many limitations of

the current approaches in these fields motivate the work in this thesis.

Our goal is to leverage the capability of deep learning but avoid overfitting

in the presence of limited annotations. Sections 2.3, 2.4, and 2.5 thus describe

methods to regularise models in a data-driven fashion in various scenarios, and

how they were applied so far in the context of machine listening.

End-to-end models have shown great performance in applications where large

amounts of data can be used for training [Krizhevsky et al., 2012], because

relevant features can be learned based on the data instead of relying on feature

engineering. For scenarios with limited annotated data, finding ways to integrate

additional data into training of end-to-end models is therefore a more promising

approach than using simple models with hand-crafted features. Especially in

machine listening applications due to the high sampling rate of audio however,

model inputs can be very high-dimensional. This can make training and inference

for end-to-end models very computationally expensive. Therefore, we will review

the state of the art for handling such sequences in particular in Section 2.6 to

identify potential avenues for performance improvements.
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2.1 Deep learning

Deep learning (DL) is a subfield of machine learning that primarily deals with

“deep neural networks” (DNNs)1, which process their inputs by applying multiple

“layers” that each perform a non-linear transformation of their respective inputs.

DNNs are very successful at approximating a variety of complex functions.

This is useful since many problems can be expressed as function estimation

problems. For example, image classification requires mapping images to the

objects depicted in them. If the images have dimension d (the number of pixels

multiplied by number of colour channels) and the system should recognise k

different types of objects, it can be modelled as a function f : Rd → [0, 1]k that

returns the likelihood of each object occurring in the input image.

2.1.1 Multi-layer perceptron

A multi-layer perceptron (MLP) is a commonly used type of DNN. An input

vector x ∈ Rd is processed sequentially by N layers. Every layer i ∈ {1, . . . , N}
consists of k “neurons” that each process the input in a non-linear fashion and

output a scalar. More specifically, the set of neurons in a layer can be represented

by a k × d weight matrix Wi and k-dimensional bias vector bi, along with an

“activation function” fi that applies a fixed, non-linear transformation separately

to each vector element. Subsequent application of all layers yields the overall

MLP output

o = fN (. . . (f2(W2(f1(W1(x) + b1)) + b2)) + . . .+ bN ). (2.1)

Note that the dimensions of the weight matrices and biases need to align so that

the output dimensionality of layer i is the same as the required input size for

layer i+ 1.

2.1.2 Convolutional neural network

MLPs feature a lot of trainable parameters – if two consecutive layers have N

and M neurons, respectively, the resulting weight matrix for the second layer

has dimensions N ×M . While the approach of “fully connecting” all neurons of

one layer with all neurons of the next one makes MLPs very flexible at solving

different tasks, they are also very prone to overfitting and computationally

expensive due to the large number of parameters.

But what if dependencies between parts of the input are mostly local and

global dependencies only exist on a higher level of abstraction? For example,

1It also includes the study of other models such as deep Gaussian processes, but in the
context of this thesis DL models and DNNs will be viewed as synonymous.
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Figure 2.1: Diagram of a convolutional neural network2

neighbouring pixels in an image exhibit much stronger correlations than randomly

chosen pairs of pixels, and global dependencies arise from the presence of different

objects (which are more abstract features). In that case, connecting a neuron in

the first layer to all inputs in the next would be inefficient and risk picking up

on spurious patterns in the training data, reducing performance.

In convolutional neural networks (CNNs) [Fukushima, 1980] as shown in

Figure 2.1, each neuron instead has a “location” relative to the input and is

connected only to inputs in its vicinity. Furthermore, sets of neurons share the

same weights for their connections, as many patterns should be useful to detect

everywhere across the input, which reduces the parameter count further. The

above can be implemented by convolving multiple filters with trainable weights

across the input, which gives this layer the name “convolutional layer”. Its

outputs are referred to as “feature maps”, as every feature is associated with a

specific location in the input.

To compute more abstract features that are more invariant to location, con-

volutional layers are followed by pooling layers that reduce the spatial resolution

of feature maps by downsampling. Convolutional and pooling layers can be re-

peatedly applied to obtain increasingly abstract features, before finally applying

a fully connected layer to obtain the desired output, such as the presence of

objects in an image.

2.1.3 Recurrent neural network

Recurrent neural networks (RNNs) are DNNs that apply their transformations

repeatedly over a sequence of inputs. Some intermediate outputs computed

at each input step (called the hidden state) are fed back to the model itself

to be used in the next step, effectively serving as a memory of the past. This

makes RNNs very powerful at processing sequences with complex dependencies

between their components, since the output at time-step t depends not only on

2By Aphex34 - CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=

45679374
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Figure 2.2: Diagram of a recurrent neural network3. x is the input vector,
h the hidden state, and o the output vector. The model parameters are the
input matrix U, the hidden-to-hidden transformation matrix V, and the output
matrix W.

the current input xt, but also implicitly on all previous inputs x1, . . . , xt−1 due

to the dependency on the hidden state ht, as shown in Figure 2.2. Note that the

output of an RNN for a given input sequence is again a sequence – for an input

sequence (x1, . . . , xT ) of length T , the output is a sequence of output vectors

(o1, . . . , oT ) that were each computed sequentially by recurrent application of

the RNN model.

More specifically, at each input step t, the current input xt along with the

previous hidden state ht−1 is used to compute the output ot and next hidden

state ht as

ht = fH(Vht−1 + Uxt) and (2.2)

ot = fO(Wht), (2.3)

where fH and fO are suitable activation functions. To compute output o1, the

initial hidden state h0 is simply set to a constant value. Note that the above

formulation depicts a basic RNN and that other variants exist, some of which

will be introduced later.

2.1.4 Training deep neural networks

After defining a DNN model, a loss function L(θ) is defined and subsequently

minimised by training the DNN (adjusting its weights θ). The loss function is

set depending on the particular problem. In image classification for example,

the DNN’s output is usually a K-dimensional vector o indicating for each of the

K classes the probability that the input image depicts an object of that class.

This vector is compared with the ground truth annotation using a cross-entropy

loss that becomes smaller as the model assigns more probability to the correct

3By fdeloche - CC BY-SA 4.0, https://commons.wikimedia.org/w/index.php?curid=

60109157
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object class. Furthermore, the loss function is usually continuously differentiable

so that gradients of the loss with respect to the weights can be computed using

backpropagation [Linnainmaa, 1976], enabling the use of gradient descent for

optimisation.

The loss is commonly defined as the expected value of an individual, per-

sample objective, with the expectation taken over a dataset of samples. Therefore,

stochastic gradient descent (SGD) can be used to approximate the expectation

by taking a random set (“batch”) of samples from the dataset.

Tackling optimisation issues When training very deep neural networks,

training can become ineffective as gradients become progressively smaller during

backpropagation, leaving very little information about how to update weights

in the front layers (“vanishing gradient problem”). This problem was observed

in RNNs [Hochreiter, 1998] as they need to be unrolled in time for training

(backpropagation through time, BPTT). To backpropagate the gradient for a

loss applied to the last RNN output, it needs to be propagated through N

applications of the RNN for an input sequence of length N .

Hochreiter [1998] proposed “Long-Short Term Memory” (LSTM), an adap-

tation of the standard RNN model that uses additive instead of multiplicative

updates to the hidden state to avoid this issue. The Gated Recurrent Unit

(GRU) [Cho et al., 2014], is a commonly used model based on the LSTM. It has

less parameters than the LSTM due to a simplified architecture while achieving

similar performance in a wide variety of tasks [Chung et al., 2014].

For DNNs with many layers, optimisation becomes more difficult in general.

The average loss on the training set achieved after training converges can increase

when using more layers in a model, instead of staying the same or decreasing

as would be expected due to the higher number of parameters [He et al., 2015].

He et al. [2015] solve this issue using “residual layers”, demonstrating that they

enable stable training of very deep CNNs. In a residual layer, an input x is

processed by a neural network layer f such as a convolutional layer, and the

result f(x) is added to the input to form the residual layer’s output

y = x + f(x). (2.4)

In this way, adding more layers would generally not increase the final training

loss as the additional layers can easily be trained to return f(x) = 0 for all

inputs x by reducing weights to zero, so that layer inputs are simply forwarded

to the next layer. Note that the addition requires the dimensionality of input x,

neural network layer output f(x) and final output y to be the same, but this

problem can be addressed by linearly projecting x to the required dimensionality
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before performing addition.

Overfitting Due to the large amount of parameters of many DNNs, overfitting

is a severe problem in many applications, especially those where training data

is scarce. Overfitting occurs when the model adapts to spurious patterns in

the training data which are not present in the true data distribution, so that

it comparatively under-performs on test data not used during training. Many

different methods for model regularisation have been proposed to prevent this,

e.g. weight decay, Bayesian neural networks [MacKay, 1995] or dropout [Hinton

et al., 2012]. However, not all regularisation methods behave equally – some are

more effective as they impose a more informative prior on the function space.

In this thesis, we will investigate regularisation techniques that use losses on

additional datasets than the one originally used for training, as they can arguably

impose strong priors on models. This is especially important given our focus on

machine listening applications, where labelled datasets are often small, as we

will see in the following Section 2.2.

2.2 Machine listening applications

Machine listening is concerned with automating the processing of audio signals

with various types of content, such as human speech, music and environmental

sounds in general.

Speech signals are the subject of extensive research efforts, since developing

machine listening models for this data enables numerous applications such as

automatic subtitling of movies and films or automatic translation of spoken

content into other languages. Common tasks in this research field include speech

recognition [Deng et al., 2013, Sak et al., 2015, Kim et al., 2016, Graves et al.,

2013], text-to-speech generation as well as voice transformation [Ling et al.,

2015], and speech separation [Wang and Chen, 2018].

Another important type of audio content is music, which is the focus of the

music information retrieval (MIR) field. Music is particularly interesting from a

research perspective due to its high degree of complexity, as multiple instruments

can express various concepts simultaneously over time by using melody, rhythm

and timbre, while interacting with each other to form harmonies. We will give a

detailed overview of common MIR tasks in Section 2.2.1.

Apart from human-generated audio data such as speech and music, a large

space of environmental sounds exists, whose interpretation can be helpful in

many contexts. Identifying the location or scene in which a recording was taken

is a widely studied problem [Mesaros et al., 2016], and could aid for example to

locate emergency calls. Furthermore, automatically recognising animal activity
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from sound recordings can be beneficial for monitoring wildlife [Stowell et al.,

2016, Nolasco et al., 2019].

Since the thesis has a special emphasis on MIR problems, we will provide an

overview of MIR in the following.

2.2.1 Music information retrieval

Music information retrieval is concerned with extracting meaningful information

from music signals, but can have a broader interpretation that also includes

manipulating and generating music signals as well. We will provide a brief

overview of different types of MIR tasks in the following.

One family of MIR tasks involves identifying where certain musical events

occur. Notable examples include the detection of note onsets [Schlüter and Böck,

2014], beats [Böck et al., 2016], drum hits [Vogl et al., 2017] or singing voice

activity [Lee et al., 2018]. These tasks are usually framed as an event detection

problem, and approaches normally consist of training a model to estimate the

likelihood of an event occurring at regular time intervals. To obtain the event

predictions, this sequence of probabilities is then decoded using methods such

as simple thresholding, peak picking, Hidden Markov Models (HMMs) or Deep

Belief Networks (DBNs).

Going beyond simply detecting event onsets, transcription tasks aim to

obtain a richer description of the musical signal as it evolves over time. Note

transcription [Benetos et al., 2013] is the most prominent example of this task,

involving the identification of note onset and offset times as well as their musical

pitch. Transcribing the fundamental frequency (F0) [Bittner et al., 2017] of the

predominant melody in a music signal is another example. In general, other types

of tasks with structured outputs exist, such as music segmentation [Foote and

Cooper, 2003], where boundaries between musical segments have to be located

and optionally these segments have to be labelled according to their musical

function.

Detecting whether music pieces as a whole have certain musical properties is

another very active field of research. Prominent examples include categorising

music pieces into different musical genres Sturm [2012], detecting the musical

key [Knees et al., 2015] and predicting the emotions experienced when listening

to a music piece [Aljanaki et al., 2016, Black et al., 2014]. More generally,

the music tagging task requires identifying which labels (tags) were assigned

to each music piece by listeners [Bogdanov et al., 2019], with tags describing

musical genres, which instruments are present in the piece, the language of

the lyrics, and many other properties. From a machine learning perspective,

these tasks are framed as classification or regression problems. In some cases,
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both approaches are a reasonable option. One example for this is music tempo

estimation, where the tempo is normally given as the number of musical beats

per minute (BPM) [Knees et al., 2015]. In a regression setting, a model would

directly estimate the BPM, whereas in a classification setting, the continuous

range of possible BPM values is subdivided into a fixed number of N tempo bins

and the model is asked to perform N -way classification.

For some tasks, models are required to output whole audio signals as pre-

dictions. This is the case of audio source separation, where the input signal

is assumed to be a mixture of signals from different sources, which should be

recovered when given the mixture signal. In the MIR context, the task of music

source separation considers the special case of audio source separation, where

sources are different musical instruments [Stöter et al., 2018], for example guitars,

drums or vocals. Manipulating music signals in meaningful ways is another

emerging research field, such as approaches to remix music pieces [Stoller et al.,

2018e] or to transfer between musical styles [Mor et al., 2018].

Music information retrieval can also be concerned with note-sheet represen-

tations of music instead of audio recordings. Some tasks described above, e.g.

genre detection, can be analogously defined for note-sheet inputs [Corrêa and

Rodrigues, 2016]. Generating convincing music pieces is also often approached

by training models to compose music using some symbolic representation that is

usually similar to a note-sheet, before synthesising the instruments according

to the obtained symbolic representation to obtain an audio signal [Ycart and

Benetos, 2017].

Many tasks in the MIR domain are related, since the musical properties that

need to be extracted for the task are often overlapping or correlated. For example,

the instruments that are present in a music piece, which need to be extracted

in an instrument detection task, correlate with musical genre, and so solving

one task can help with solving another. Some tasks stand in a hierarchical

relationship with one another, where solving the higher-level tasks requires

solving the lower-level task in the process. For example, if one successfully

transcribes all instruments in a music piece, instrument activity detection such

as singing voice detection [Lee et al., 2018] is also solved in the process since

transcribing correctly requires detecting when instruments are active.

Music source separation is another example for a task with many similarities

to other tasks, and challenges posed by this problem motivate many approaches

in this thesis. Therefore, we will provide an in-depth review of audio and music

source separation in the following.
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2.2.2 Audio source separation

Audio source separation is the task of predicting the audio signals of sources

present in a given audio signal (also called “mixture” as it is a mixture of the

source signals). We will review methods for audio source separation in the

following, as it is a very suitable “benchmark task” we will use throughout this

thesis to evaluate approaches for dealing with small annotated datasets, due

to multiple reasons. Firstly, datasets for this task are often small [Rafii et al.,

2017] since creating and distributing multi-track data is difficult. At the same

time, solo source recordings and individual mixtures are usually available. These

cannot be incorporated into the training set when using a standard supervised

learning approach, but when viewed as a special kind of missing data (see

Section 2.5), could still provide important prior knowledge to the model enabling

better generalisation. Source separation also tends to be related to many other

classification tasks especially those requiring the detection of activity of one

of the sources – e.g. singing voice separation is very closely related to singing

voice detection. Finally, audio source separation is suited as a benchmark task

since it is a challenging inverse problem due to its under-determined nature:

many estimates of the source signals can possibly yield the same mixture signal,

as the number of audio channels of the mixture is typically less than the total

number of audio channels of the source (change of dimensionality). Additionally,

the mapping of a set of source signals to a mixture (the “mixing process”) can

even be non-linear in some settings and highly complex. For example, an audio

engineer might apply additional audio compression and equalisation to a music

piece after combining the source signals (individual instruments) into one audio

track.

Methods for audio source separation can be divided into two categories. First,

we discuss the generative approach featuring a Bayesian view in Section 2.2.2.1,

where a generative model of the sources (prior) and of the “mixing process”

(likelihood) is constructed. Afterwards, posterior inference of the sources given a

mixture is performed using this generative model. The discriminative4 approach

is presented in Section 2.2.2.2 and forgoes the construction of a generative model.

Instead of viewing the desired distribution as the posterior distribution of such

a generative model, it is treated simply as a conditional distribution or function

that is estimated directly by an ML model, such as an NN.

4Note that we use discriminative loosely in the sense of directly approximating a distribution,
not limited to just classification but also including regression
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2.2.2.1 Generative approaches

A Bayesian perspective is well suited for source separation if extensive prior

knowledge about the sources is available, as it can be explicitly integrated into

the model. However, early approaches [Févotte, 2007, Cemgil et al., 2007] often

had to make many simplifying assumptions about the data generation process

to constrain the generative model such that the difficult problem of posterior

inference is tractable. A more recent framework provides various entry points to

incorporate available prior knowledge into source models [Ozerov et al., 2012].

However, the resulting complex models do not always scale to large data due to

the use of computationally intensive inference algorithms.

For modeling singing voice, a commonly made assumption is a sparse rep-

resentation in the magnitude spectrogram, while the accompaniment is of low

rank and changes more slowly [Huang et al., 2012, Chan et al., 2015, Rafii et al.,

2013]. However, as indicated by recent evaluation campaigns [Liutkus et al.,

2017], modelling more nuanced relationships (using deep networks) might be

beneficial since this assumption only holds to an extent.

Non-negative matrix factorisation (NMF) is often used for separation, and

can elegantly incorporate prior knowledge about sources [Sun and Mysore, 2013].

However, NMF is limited in expressivity due to the assumption that spectral

content can be factorised independently of time [Ewert et al., 2014], and many

spectral basis vectors are needed to represent complex instruments.

Overall, current generative models are subject to various constraints in their

structure, sacrificing separation performance to keep inference tractable, or

require expert knowledge to set priors.

2.2.2.2 Discriminative approaches

Many deep neural networks have been trained to directly predict sources from

mixture input, from feed-forward [Nugraha et al., 2015] to convolutional [Simpson

et al., 2015, Miron et al., 2017] and recurrent neural networks [Huang et al.,

2014, Luo et al., 2017, Uhlich et al., 2017]. The loss involves comparing the

prediction and the correct output for each input, restricting the approach to

input-output pairs from multi-track datasets. Although these deep architectures

perform well, it is not directly possible to improve them by also learning from

individual source recordings, since the prior is not explicitly modelled.

Furthermore, extensive data augmentation is required [Uhlich et al., 2017,

Miron et al., 2017] to combat overfitting due to the limited number of multi-track

recordings. Randomly mixing source excerpts to generate mixtures is common,

but assumes that sources are temporally independent. Since this is not the

case in music pieces, correlations between sources cannot be exploited by the
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separator.

To alleviate the problem of fixed spectral representations widely used in

previous work [Nugraha et al., 2015, Simpson et al., 2015, Miron et al., 2017,

Huang et al., 2014, Luo et al., 2017, Uhlich et al., 2017], an adaptive front-end for

spectrogram computation was developed [Venkataramani and Smaragdis, 2017]

that is trained jointly with the separation network, and which operates on the

resulting magnitude spectrogram. Despite comparatively increased performance,

the model does not exploit the mixture phase for better source magnitude

predictions and also does not output the source phase, so the mixture phase has

to be used for source signal reconstruction, both of which limit performance.

To our knowledge, only the TasNet [Luo and Mesgarani, 2017] and MR-

CAE [Grais et al., 2018] systems tackle the general problem of audio source

separation in the time domain. The TasNet performs a decomposition of the

signal into a set of basis signals and weights, and then creates a mask over the

weights which are finally used to reconstruct the source signals. The model is

shown to work for a speech separation task. However, the work makes concep-

tual trade-offs to allow for low-latency applications, while we focus on offline

application, allowing us to exploit a large amount of contextual information.

The multi-resolution convolutional auto-encoder (MRCAE) [Grais et al.,

2018] uses two layers of convolution and transposed convolution each. The

authors argue that the different convolutional filter sizes detect audio frequencies

with different resolutions, but they work only on one time resolution (that of

the input), since the network does not perform any resampling. Since input

and output consist of only 1025 audio samples (equivalent to 23 ms), it can

only exploit very little context information. Furthermore, at test time, output

segments are overlapped using a regular spacing and then combined, which differs

from how the network is trained. This mismatch and the small context could

hurt performance and also explain why the provided sound examples exhibit

many artifacts.

For the purpose of speech enhancement and denoising, the SEGAN [Pascual

et al., 2017] was developed, employing a neural network with an encoder and

decoder pathway that successively halves and doubles the resolution of feature

maps in each layer, respectively, and features skip connections between encoder

and decoder layers. However, aliasing artifacts can occur in the generated output

when using strided transposed convolutions as shown by [Odena et al., 2016].

Furthermore, the model cannot predict audio samples close to its border output

well since it is given no additional input context. It is also not clear if the model’s

performance can transfer to other and more challenging audio source separation

tasks.

The Wavenet [van den Oord et al., 2016] was adapted for speech denois-
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ing [Rethage et al., 2017] to have a non-causal conditional input and a parallel

output of samples for each prediction. It is based on the repeated application of

dilated convolutions with exponentially increasing dilation factors to factor in

context information. While this architecture is very parameter-efficient, memory

consumption is high since each feature map resulting from a dilated convolution

still has the original audio’s sampling rate as resolution.

Since overfitting is a prevalent issue when employing DL models for audio

source separation and many other machine listening tasks due to the limited

availability of annotated training data, we will review approaches to improve

generalisation in the following.

2.3 Multi-task learning

One of the techniques to regularise DL models is to use Multi-task learning

(MTL) [Caruana, 1998], which is based on the idea that the features of a model

generalise better when they are not only useful for the task at hand, but also

for multiple other, related tasks. Besides regularisation, efficiency is another

benefit of this approach as a single model can be used for multiple tasks instead

of training a separate model for each. The most common ways of realising MTL

in DL are called hard and soft parameter sharing, as illustrated in Figure 2.3.

In hard parameter sharing, some parameters are shared between all tasks, while

others are reserved for individual tasks. Commonly, the initial layers in a DNN

are shared, while task-specific layers “branch out” from the final shared layer and

process the shared feature set individually as needed, as shown in Figure 2.3a.

With soft parameter sharing, each task is tackled with a separate model, but

similarity between the parameters in the different models is encouraged by adding

some form of weight distance loss (e.g. L2 norm) to the optimisation objective,

as illustrated in Figure 2.3b.

Given N tasks, corresponding task losses Li, i ∈ {1, . . . , N} and parameters

θi, the objective optimised in an MTL setting can generally be defined as

L(θ) =

N∑
i=1

αiLi(θi), (2.5)

that is, a weighted average of the task losses, where the weights α represent hyper-

parameters, and θ is the union of all task-specific parameters. In hard parameter

sharing, the parameter sets θi would share a common set of parameters. This is

not the case in soft parameter sharing, where instead an additional regularising

term is added to the objective L(·) based on some distances calculated between

pairs of parameter sets θi and θj where i 6= j.
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Task A Task B Task C

(a) MTL with hard parame-
ter sharing. The first layers
are shared between tasks.

Task A Task B Task C

(b) MTL with soft parameter sharing. Red arrows indi-
cate parameter constraints.

Figure 2.3: Different MTL approaches in comparison

2.3.1 Application of MTL to MIR

In music information retrieval, many tasks are inter-related in some fashion.

Some tasks are arguably in a hierarchical relationship with one another, where

solving one task might solve another one in the process – for example, perfectly

separating singing voice would make singing voice detection a trivial exercise in

measuring the signal energy of the predicted vocal signal, an idea that we will

discuss more below and investigate in detail in Section 4.2. Other tasks might

exhibit a more “symbiotic” relationship, where certain sub-problems are shared.

For example, chords change often at beat positions, so chord detection should

benefit from beat detection and beat detection might benefit from observing

chord changes – although knowing the solution to one problem does not directly

identify the solution to the other, it does provide information due to their

correlation.

Applications of MTL to MIR are still few but are becoming increasingly

common. However, they are limited to closely related tasks, such as joint beat

and downbeat detection [Böck et al., 2016], transcription of onsets, interme-

diate frames and offsets of notes [Kelz et al., 2019], source separation [Doire

and Okubadejo, 2019], and joint multiple-f0, melody, vocal, and bass line es-

timation [Bittner et al., 2018], and others [Bittner et al., 2018, Chen et al.,

2018].

Kim et al. [2019] compare different representation learning strategies for

multiple MIR tasks, although they are limited to the setting where an audio

excerpt is classified, and so do not consider tasks with time-varying outputs that

might also be framed as regression tasks such as beat estimation, transcription

and source separation.

MTL in the context of singing voice separation and detection Most

approaches to singing voice separation (SVS) train DNNs on multi-track record-
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ings in a supervised fashion to estimate the individual sources from a given

mixture input [Huang et al., 2014, Luo et al., 2017]. Similarly, recent singing

voice detection (SVD) approaches train DNNs as binary classifiers using record-

ings annotated with changes in singing voice activity [Schlüter, 2016, Lee et al.,

2018]. While this approach often leads to considerable improvements over pre-

vious methods, it requires suitable multi-track data or annotated recordings,

respectively. Unfortunately, publicly available datasets are often rather small on

the order of a few hundred tracks. This leads to overfitting and limits overall

performance.

Informed source separation aims to circumvent this problem for SVS by

providing additional information to the separation model, e.g. the musical

score [Ewert and Sandler, 2016]. This way, the problem can be simplified, which

often leads to improved results on small, annotated datasets. On the other hand,

such approaches can only be employed if suitable side information is indeed

available, which is often not the case for musical scores.

A joint separation-classification model [Kong et al., 2017] was proposed for

the more general problem of sound event detection that employs a separation

network whose output mask for each source is summarised with a mean or max

operation to detect active sound events. It is designed for weak labels and

might be more sensitive to dataset biases when training with different separation

and detection datasets due to its simple detection component. Heittola et al.

[2011] train with precise activity labels, but separation is used as a front-end for

detection instead of performing joint estimation. Therefore, separation cannot

be improved using mixtures with only activity labels.

To our knowledge, Chan et al. [2015] provide the only work combining SVS

in particular with SVD. Vocal activity labels are used to construct a mask,

which forces the corresponding parts of the mixture spectrogram to be modelled

individually in a method based on robust principal component analysis (RPCA).

For an increase in separation quality however, vocal activity labels are required

during prediction. The labels also have to be quite precise as a false negative

label would force the vocal estimate to be zero for vocal sections.

Schlüter [2016] focuses solely on SVD, but also shows that the resulting

network can be used for detecting the location of the singing voice in the time-

frequency domain. This suggests it might be useful to integrate the information

contained in the activity labels into separation models to improve their perfor-

mance. A related method was introduced by Ikemiya et al. [2015]. It produces a

rough estimate of the vocals in a first step. After computing the fundamental

frequency based on this estimate, the separation result is further refined. These

two steps are repeated until convergence.
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2.4 Pre-training

Another increasingly common approach to incorporate prior knowledge into a

DL model is to use pre-training, where the model is trained on some other task

and data before taking the obtained weights and using them as initialisation

points when performing the task-specific training. From a Bayesian perspective,

this can be viewed as one of many methods to impose a prior on the parameters

of an ML model, as the initialisation point defined at the beginning of SGD

training can influence how likely the optimisation is to end up in different areas

of the parameter space. Note that in contrast to simple feature or representation

learning [Bengio et al., 2013], a weight initialisation can include learning a full

hierarchy of features along with knowledge about how they are computed, which

can be adapted during task-specific training.

We can categorise pre-training methods into three different approaches: un-

supervised and supervised pre-training as well as meta-learning of initialisations.

2.4.1 Unsupervised pre-training

The first pre-training approach is called unsupervised pre-training5 or self-

supervised learning. It uses additional unlabelled data together with a hand-

crafted loss function designed to prepare the model for the following unseen task.

While this allows for potentially large performance gains on the final tasks due

to the large amount of unlabelled data that is often available, it is difficult to

find a suitable loss function as there are no given target labels to predict.

More recently, pre-training in this manner has achieved great successes [Trinh

et al., 2019, Radford et al., 2015], notably in natural language processing (NLP)

[Devlin et al., 2019, Peters et al., 2018]. These approaches pre-train large

recurrent networks and transformers on an auto-regressive language modelling

task, where the next word needs to be predicted given the previous ones. Due

to the complex dependencies between words, making good predictions in this

context requires learning many important linguistic features such as sentiment,

grammatical structure, etc.

There are also approaches to learn useful representations of audio in particu-

lar [van den Oord et al., 2019, Chorowski et al., 2019, Schneider et al., 2019],

although they are mostly focused solely on speech data. Cramer et al. [2019]

construct deep audio embeddings by self-supervised learning of audio-visual

correspondence and demonstrate their usefulness when only few labelled data are

available, although their results are limited to environmental sound classification

tasks and the method requires both video and audio data to be available. For

5Note that with “unsupervised pre-training” we do not refer to layer-wise pre-training, as
used in very early DL applications [Bengio et al., 2007]
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MIR problems, the only existing work employing unsupervised pre-training to

our knowledge was conducted by McCallum [2019], which focuses specifically on

music segmentation.

2.4.2 Supervised pre-training

The second type of pre-training we identify in this thesis is called supervised

pre-training. Similarly to unsupervised pre-training, the model of interest is

trained on an additional task before using the obtained weights as initial weights

for the actual task training. However, in supervised pre-training, this additional

task involves supervised learning, i.e. predicting some kind of label on some

dataset, in the hopes that similarities between that label prediction task and

the actual task allow for better generalisation. This technique is very commonly

used in computer vision, where CNNs are pre-trained on the Imagenet dataset

to perform object classification [Girshick et al., 2014, He et al., 2018].

In the audio domain, Kong et al. [2020] pre-train an audio classification

model on AudioSet [Gemmeke et al., 2017] before transferring it to six different

audio classification tasks. For music specifically, we are only aware of Choi et al.

[2018] and van den Oord et al. [2014], who use music tagging as a pre-training

task. However, especially for van den Oord et al. [2014], the choice of tasks is

constrained to those that are very similar to the pre-training task, e.g. mostly

tagging tasks that require identifying high-level attributes of music pieces, as

opposed to tasks with time-varying outputs such as music transcription and audio

source separation. Additionally, Choi et al. [2018] do not consider fine-tuning

the whole DL model after pre-training, but rather use some of the layers to

construct a feature set that is then used in other classifiers and compared to

basic feature sets, which can be viewed as a more shallow form of pre-training.

Furthermore, the performance obtained is often still below that of training the

same DL model from scratch.

2.4.3 Meta learning

We identify meta-learning as the third type of pre-training. In meta-learning,

“meta-parameters” are optimised so that subsequent training on a task results in

good generalisation [Finn et al., 2017, Nichol et al., 2018]. Tasks are assumed to

come from a specific task distribution T to enable generalisation to unseen tasks

as long as they are also drawn from the same distribution. The meta-objective is

to optimise the expected task performance. For example, if we define the weight

initialisation at the beginning of task training as a meta-parameter, the meta

35



objective can be written as

arg min
φ

Eτ∼T
[
Lτ
(
Ukτ (φ)

)]
, (2.6)

where Lτ is the loss for task τ and Ukτ the operator that updates the model

parameters φ by performing k steps of gradient descent based optimisation. Note

that optimising (2.6) with gradient descent requires backpropagating gradients

not only through the final task loss Lτ , but also throughout the whole task

training process Ukτ . Since this can be computationally expensive, a first-order

approximation is also proposed by Finn et al. [2017], Nichol et al. [2018] where

its gradient is effectively omitted. Meta-learning can be viewed as a type of pre-

training if only the weight initialisation used at the beginning of task training is

included as a meta-parameter, but it is more general since other components can

be meta-learned as well such as the SGD optimiser or the network architecture.

In contrast to the pre-training approaches outlined in Sections 2.4.1 and 2.4.2,

where the pre-training objective is assumed to be helpful for the tasks of interest,

meta-learning has the advantage of directly optimising for good performance

on similar tasks and so can ensure that the pre-training is actually helpful and

not detrimental (“negative transfer”). However, it cannot directly make use of

unlabelled data in the way unsupervised pre-training is able to, although initial

studies begin to tackle this issue [Metz et al., 2019]. Furthermore, in practice

it is often limited to few-shot learning settings [Finn et al., 2017, Triantafillou

et al., 2018], as each step of meta-optimisation requires training the model on a

randomly drawn task or set of tasks with the current meta-parameters. Note that

MTL differs from meta-learning in that the usual problem setting of MTL is to

perform well on a set of known tasks by solving them jointly, while meta-learning

uses these tasks to achieve good performance on a separate set of unseen “test”

tasks.

In the context of MIR, we are not aware of any approaches employing

meta-learning to enable generalisation across a variety of MIR tasks.

2.5 Tackling missing data

Missing data occurs in many practical scenarios due to various reasons, such

as incomplete measurement or drop-out of participants in a study. Therefore,

it is important to handle it correctly when building statistical models. In our

context, it is desirable to develop models that can be trained from incomplete

observations, as it enables the use of additional datasets where certain features

are not included. This in turn prevents overfitting to the few samples that were

fully annotated for the task.
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The missing data problem arises in many applications. Here we will use

music source separation, a well established machine listening task, as an example

to illustrate the specific kind of missing data problem we consider in this thesis.

When separating instruments from music pieces, only few music pieces with the

corresponding instrument stems (“multi-track data”) are available for training.

However, additional solo instrument recordings and individual music pieces are

often available. Samples from these additional datasets can also be used for

training when framing the task as a special missing data problem, i.e., viewing

them as incomplete since some instrument stems or the music mixture is missing.

Importantly, the reason why some values in a dataset are missing needs to

be accounted for by the statistical model to avoid introducing bias. For example,

the probability that a question A in a survey is answered by a participant

might depend on an answer to another question B. If this is ignored and only

full observations are used to model the conditional probability of an answer

to question A given the answer to question B, the resulting statistical model

is biased. For our audio source separation example above, it is important to

note that some individual instrument recordings might not be intended to be

mixed with other instruments, and so their data distribution is different from

instrument recordings taken from the multi-track data.

For the general missing data problem, the reasons for missing values can be

categorised into three classes:

Missing completely at random (MCAR) The probability of a value being

missing from a sample is completely random, and so does not depend on the

value itself or any of the observed values. In this case, incomplete samples are

still representative samples in that they come from the same distribution as the

complete samples, so no extra care needs to be taken when building statistical

models on this data. However, it is rare that MCAR actually applies in practice.

Missing at random (MAR) The probability of a value being missing from

a sample is not completely random, but depends only on other observed values.

Statistical bias can be introduced when not taking account for this.

Missing not at random (MNAR) The probability of a value missing from

a sample depends on the value itself.

Note that the reason for missing values is often not known to the researcher,

and so one of the above types of missingness is assumed to hold for the data in

question.
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For methods that cannot robustly handle such missing data, the missing

values need to be filled in (“imputed”) first, for which multiple approaches exist.

A simple approach to eliminate incomplete samples is simply to remove them,

but this can result in a large loss of information and a too small dataset, as well

as dataset bias in case the data is MAR or MNAR. Another method is to fill

in each missing value with the mean of the observed values for the respective

feature. However, more sophisticated methods for imputation exist, such as

multiple imputation methods [Murray, 2018].

A generative adversarial network (GAN) [Goodfellow et al., 2014] is a particu-

larly powerful method for modelling complex probability distributions. However,

due to its reliance on large amounts of high-quality data to perform well, it

would be desirable to enable its use in various missing data scenarios, so we

present GANs and work in this context in the following.

2.5.1 Generative adversarial networks

Generative adversarial networks (GANs) are a powerful approach to modelling

complex probability distributions using DL models, which can be employed for

various generation and prediction tasks.

To model a probability distribution px over x ∈ Rd, the standard GAN

framework [Goodfellow et al., 2014] introduces a generator model Gφ : Rn → Rd

that maps an n-dimensional input z ∼ pz to a d-dimensional sample Gφ(z),

resulting in the generator distribution qx. To train Gφ such that qx approximates

the real data density px, a discriminator Dθ : Rd → (0, 1) is trained to estimate

whether a given sample is real or generated:

θ̂ = arg max
θ

Ex∼px logDθ(x) + Ex∼qx log(1−Dθ(x)). (2.7)

In the non-parametric limit [Goodfellow et al., 2014], Dθ(x) approaches D̃(x) :=
px(x)

px(x)+qx(x)
at every point x. The generator is updated based on the discrimina-

tor’s estimate of D̃(x) by minimising Ex∼qx log(1−Dθ(x)) with respect to φ. To

increase training stability, an alternative loss for Gφ is proposed by Goodfellow

et al. [2014] that involves minimising

L(θ) = −Ez∼pz logDθ(Gφ(z)). (2.8)

One major problem in training GANs is their instability [Mescheder et al.,

2018] – often the generator suddenly collapses to a single output for all noise

inputs (“mode collapse”), or the discriminator can “overpower” the generator

when it perfectly discriminates real from generated examples, but offers no usable

feedback for the generator to improve.
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Many alternative formulations for GANs have been developed that use

different optimisation objectives or regularise the generator or discriminator

networks to improve training stability [Mao et al., 2017, Arjovsky et al., 2017,

Gulrajani et al., 2017, Miyato et al., 2018].

In terms of applications, GANs have been successfully used for high-quality

image generation [Brock et al., 2019, Karras et al., 2018a,b], image super-

resolution [Sønderby et al., 2017] and image-to-image translation [Zhu et al.,

2017, Almahairi et al., 2018] and other applications (see Creswell et al. [2018]

for an overview).

2.5.2 GANs for missing data scenarios

In the following, we will look at how GANs can be employed in the presence of

missing data, either directly as generative models of the joint data distribution

or as a data imputation technique.

For semi-supervised classification, GANs were employed to use the discrimi-

nator as a regularised classifier [Odena, 2016], to encourage uncertain classifier

predictions for generated samples [Springenberg, 2015], and to enforce smoothly

changing label predictions around generated points [Miyato et al., 2015].

For conditional generation, “CycleGAN” [Zhu et al., 2017] aims to model

conditional distributions p(A|B) and p(B|A) of a given joint distribution p(A,B)

using only unpaired samples, which are drawn from the two marginal distributions

p(A) and p(B). To achieve this, the existence of a one-to-one mapping between

the two distributions is assumed and bidirectional generators are used (similarly

to Gan et al. [2017]). While CycleGAN can often be trained on more data,

since such unpaired samples are often more easily available than paired samples

drawn directly from the joint p(A,B), also being able to learn from the latter

samples would be desirable to more accurately learn the dependency structure.

Almahairi et al. [2018] and Tripathy et al. [2018] learn from paired examples with

an additional reconstruction-based loss, but use a sum of many different loss

terms which have to be balanced by additional hyper-parameters. Additionally,

the above methods cannot be applied to generation tasks with missing data or

prediction tasks with multiple outputs.

Brakel and Bengio [2017] perform independent component analysis in an

adversarial fashion using a discriminator to identify correlations. The separator

outputs are enforced to be independent, but the method is not fully adversarial

and cannot model arbitrary dependencies. GANs were also used for source

separation to improve performance in missing data scenarios [Zhang et al., 2017],

but dependencies between sources were ignored.

Pu et al. [2018] use GANs for joint distribution modelling by training a
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generator for each possible factorisation of the joint distribution, but this requires

K! generators for K marginals. Karaletsos [2016] propose adversarial inference

on local factors of a high-dimensional joint distribution and factorise both

generator and discriminator based on independence assumptions given by a

Bayesian network. Finally, Yoon et al. [2018] randomly mask the inputs to a

GAN generator so it learns to impute missing values.

Since we often encounter sequential data in machine listening, such as audio

signals, and their high dimensionality makes it challenging to efficiently train DL

models that operate on them, we will also review current literature on sequence

models in the following Section.

2.6 Sequence models

Since one contribution of our thesis is the development of computationally

efficient, end-to-end DNNs for sequences such as audio waveforms, we will

provide a review of sequence modeling techniques in the following.

Sequence models are generative models that assign a certain probability to

a given sequence x = (x1, . . . , xN ), and are usually trained to maximise the

likelihood of the data under the model. Note that this framework also supports

conditional generation tasks such as source separation, where source estimates

need to be generated for a particular input mixture, when adding the additional

condition as input to the model. Since N is normally not constant but rather

varies with each sample in the dataset, standard generative models (such as

GMMs, flow-based models [Dinh et al., 2016] or GANs) cannot be used directly

used as they require the input dimensionality to be fixed. Auto-regressive

sequence models avoid this limitation by exploiting the chain rule of probability,

which allows factorising the joint probability p(x) as

p(x) = p(x1) · p(x2|x1) · p(x3|x1, x2) · . . . · p(xN |x1, . . . , xN−1) (2.9)

and then using parameters φ to model the probability pφ(xt|x1, . . . , xt−1) of

each sequence element xt given its previous elements. Models can be of limited

order p, meaning they only consider the previous p elements, thereby estimating

pφ(xt|xt−p, . . . , xt−1).

In the following, we give an overview of recent DL-based approaches for

sequence modelling, presenting methods employing RNNs (infinite-order models)

before discussing methods using CNNs (finite-order models).
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2.6.1 RNNs for sequence modelling

Recurrent neural networks (RNNs) are a commonly used approach in deep

learning for sequence modelling, including LSTMs and GRUs [Graves et al.,

2013, Boulanger-Lewandowski et al., 2012]. In practice, training these models to

successfully capture long-term dependencies can be difficult [Bengio et al., 1994]

and slow as computation is strictly sequential and cannot be parallelised [Trinh

et al., 2018]. Hierarchical multi-scale RNNs [Chung et al., 2016, El Hihi and

Bengio, 1995] and the Clockwork RNN [Koutńık et al., 2014] model time se-

ries on multiple time-scales to enable longer-term dependency modelling, but

sequential processing at high-resolution timescales is still computationally expen-

sive. Further work in this direction also includes the DilatedRNN [Chang et al.,

2017]. The SampleRNN [Mehri et al., 2016] is a three-layer RNN specifically

developed for audio generation. While it also employs a multi-scale approach

to an extent, it inherits the disadvantages of RNNs mentioned above, and the

“slower” layers have to compute high-level features directly from the raw audio

input and forward them to the “faster” layers, which is arguably more difficult

than computing them bottom-up using features from the “faster” layers.

2.6.2 CNNs for sequence modelling

Alternative approaches involve CNNs with filters that have increasing dilation

factors to cover longer distances between inputs [Kalchbrenner et al., 2016, Cam-

pos et al., 2017], of which we highlight TCN [Bai et al., 2018] and Wavenet [van

den Oord et al., 2016] for sequence modelling. Due to their depth, these neural

models require a large amount of memory and have slow inference as a forward

pass is required at each time-step.

The parallel Wavenet [van den Oord et al., 2017] provides fast inference by

using a flow-based student network to emulate the outputs of an already trained

Wavenet. For long-term dependency modelling in audio, Dieleman et al. [2018]

use a complex, multi-stage training with auto-encoding networks to compress

the audio before using Wavenets to model the latent state evolution. However,

since these approaches involve training a Wavenet, they inherit its computational

complexity.

Other approaches have been developed such as FFTNet [Jin et al., 2018],

WaveRNN [Kalchbrenner et al., 2018] and MelNet [Vasquez and Lewis, 2019],

which do provide large efficiency gains by means of optimisations specific to the

audio domain, but at the cost of generality.

Finally, the Transformer network [Vaswani et al., 2017] has shown great

potential for sequence-based tasks, but the complexity of its attention mechanism

is quadratic in the length of the sequence, preventing its use for long sequences.
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Sparse Transformers [Child et al., 2019] restrict the attention modules to a

sparse subset of all previous inputs to remedy this, but could still benefit from

introducing a multi-scale architecture.

We are unaware of multi-scale approaches evaluated across a variety of

sequence modelling problems, but such approaches were used for video segmen-

tation [Shelhamer et al., 2016].

2.7 Discussion

As seen in Sections 2.3 and 2.4, the potential of techniques such as multi-task

learning and pre-training has arguably not been explored sufficiently in the

context of machine listening and especially MIR. Instead, models are almost

always trained to perform a single task at a time, with weights randomly

initialised at the beginning of training. Not only is the training time increased

compared to approaches that share models between tasks, as models have to

start “from scratch” for each task, but also the potential to improve model

generalisation by exploiting task similarities remains unused.

Due to research being focused on individual tasks at a time, many proposed

NN architectures, regularisation schemes, etc. are only validated on a single

MIR task. As a result, it is often uncertain whether the proposed approaches

generalise, i.e., yield benefits in other MIR tasks as well.

Furthermore, machine listening models almost always make use of additional

feature extraction steps, such as the computation of spectrograms and further

derivative features. This often relies on prior knowledge being available about

the particular problem, which is limited and can be inaccurate, leading to a

glass ceiling in terms of performance. Therefore, it is desirable to research

end-to-end models that are enjoying success in other domains such as computer

vision [Krizhevsky et al., 2012] and natural language processing [Devlin et al.,

2019], and how they can be made flexible enough to support tasks with different

input and output requirements. This would in turn further enable exploration

of multi-task learning and pre-training techniques as models can be prepared for

a larger set of different machine listening tasks.

Due to the lack of feature extraction, however, inputs to end-to-end models

can be very high-dimensional. As a result, such models can become very compu-

tationally expensive, see e.g. Wavenet [van den Oord et al., 2017]. Improving

the computational efficiency of such models is thus another important research

direction.
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Chapter 3

Generative adversarial

networks for missing data

scenarios

3.1 Motivation

Real-world datasets often suffer from the problem of missing data, where some

observations are incomplete, meaning not all features of interest were observed.

Furthermore, datasets from different sources might contain different sets of

features that can be observed about the underlying observation. We will focus

on one possible missing data setting in particular, where the dataset’s feature

dimensions can be partitioned into a set of disjoint groups, so that each incomplete

observation contains exactly one of these groups of features. These groups are

assumed to be missing completely at random (MCAR), which means that the

likelihood of a group being missing does not depend on any other data, whether

observed or unobserved. In other words, the data distribution from which

samples are drawn is the same regardless of which groups are present.

This focus is motivated by a common problem in ASS, where multi-track

datasets are required for supervised approaches. While these are difficult to

obtain and usually small in size, there are often many additional datasets

with isolated source recordings available, which can be viewed as incomplete

observations in the missing data scenario explained above – each isolated source

recording represents an observation in which all groups of features except for one

are missing, and a multi-track recording represents an observation in which all

groups are present. By developing methods suited for this scenario, separation

models can learn the properties of the sources more precisely than with multi-
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track data alone, which in turn allows for higher separation quality as source

estimates can be made to sound more realistic. In contrast to manually specifying

source priors as commonly done in previous work [Févotte, 2007, Liutkus et al.,

2015, Huang et al., 2012], our “source prior” is learnt in a data-driven fashion

by providing additional source recordings.

In Section 3.2, we will detail an approach to improving ASS in this setting

by combining a standard supervised loss with a novel unsupervised, GAN-based

loss. Building on this, Section 3.3 will introduce a generic, fully adversarial

framework for handling such missing data along with experiments in a variety

of application domains, including not only ASS but also image generation and

image segmentation.

3.2 Adversarial semi-supervised audio source

separation

In our first study, we will focus on ASS. Separating instruments from music

recordings is challenging as the individual sources are highly correlated in both

time and frequency. To approach such a setting, most current methods train

deep networks in a supervised manner to predict the source signals for a given

mixture input directly. Since the source estimate is compared to the target for

each input, as shown in Figure 3.1a, this requires paired input-output samples

from multi-track recordings. However, publicly available datasets are rather

small, which limits the overall performance. As a result, data augmentation

(and other regularisation techniques) are used to combat overfitting [Uhlich

et al., 2017, Miron et al., 2017]. However, some of the assumptions made are

unrealistic: for example, randomly mixing sources implicitly assumes that sources

in a music recording are independent - the reason that music separation is so

difficult, however, is exactly due to correlation between instruments. As a result,

performance can be limited since source correlations in the test set cannot be

learned from the augmented training data.

With a generative approach, we can instead model a prior for each of the

sources and how they interact to produce a mixture, the former of which can

be learned from solo source recordings. Separation is then an inference problem

amounting to finding source estimates that explain a given mixture under the

generative model. However, performing the required posterior inference is

computationally intensive, so models often have to be heavily simplified [Févotte,

2007], again limiting their performance.

We therefore develop a novel unsupervised objective shown in Figure 3.1b

that makes use of the large amount of available unlabelled music tracks as
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(a) Standard supervised training
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(b) Proposed adversarial training

Figure 3.1: Our proposed system, shown for the example of singing voice
separation. In addition to a supervised loss (a), we add an unsupervised loss
(b) that drives the separator to produce a more believable output distribution
for each source, as assessed by discriminators that try to distinguish real from
separator samples.

well as datasets of solo instrument recordings, and combine it with supervised

training. This way, we can benefit from the numerical behaviour and training

stability of supervised methods while also capturing the variability and richness

found in large amounts of unlabelled music and solo instrument recordings.

In particular, one discriminator network per source is continually trained to

distinguish separator estimates made on full music recordings (unlabelled) from

real samples taken from the respective source dataset. The separator aims to

output more realistic sources as judged by the discriminators, in addition to

minimising the supervised loss on multi-track data.
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3.2.1 Proposed framework

Our goal is to separate a mixture m into K sources s = (s1, . . . , sK)T . Here,

each mixture m and source signal si represents an excerpt from a magnitude

spectrogram - our framework, however, is easily adapted to other input rep-

resentations such as waveforms. Overall, we assume a multi-track dataset

Dm = {(m1, s1), . . . (mM , sM )} with M input-output samples is available. Fur-

thermore we have access to U unlabelled mixture samples Du = {mu
1 , . . . ,m

u
U}

and a collection Dks of solo recordings for each source k. Let p(s,m) be the true

probability of any source-mixture pair. We assume Dm is sampled from p, Du

from the marginal pm(m) =
∫
s
p(s,m), and Dks from the marginal of the k-th

source pks (sk) =
∫
{s1,...,sK ,m}\{sk} p(s,m).

In this study, we focus on the case where the separator is deterministic, so

that its output probability qφ(s|m) over sources given a mixture with model

parameters φ can be defined as

qφ(s|m) = δ(fφ(m)− s), (3.1)

where δ(·) is the Dirac delta function, so that δ(0) yields 1 and otherwise 0.

Our goal is to train the separator function fφ, which can be a deep neural

network, with all available data so that it approximates the real posterior p(s|m).

Current approaches usually use the mean squared error between estimates and

targets for each input

Ls =
1

M

M∑
i=1

||fφ(mi)− si||22 (3.2)

as a loss function on multi-track data. However, this loss function does not

include the unlabelled data and is minimised when predicting the posterior mean,

which is an unlikely estimate itself and often corresponds to a blurred average of

real posterior modes.

We derive an unsupervised loss without these issues. An optimal separator

qφ would estimate the real posterior perfectly and thus fulfil qφ(s|m) = p(s|m)

for all possible m. In this case, it follows that the marginal separator output
outqφ(s) = Em∼pm qφ(s|m) would be equal to the true source marginal ps(s) =

Em∼pm p(s|m). If the joint distributions outqφ and ps are the same, then so are

their source marginals – with outqkφ(sk) =
∫
{s1,...,sK}\{sk}

outqφ(s), this means

outqkφ = pks , ∀ k = 1, . . . ,K. (3.3)

The above distribution equalities are thus necessary, but not sufficient conditions
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for an optimal separator.

To approximately fulfil the equalities in (3.3), we can define a divergence

D[outqkφ||pks ] with D[q||p] ≥ 0 and D[q||p] = 0⇔ q = p between the two distribu-

tions for each source k to formulate an unsupervised loss we aim to minimise

Lu =

K∑
k=1

D[outqkφ||pks ]. (3.4)

This loss allows using our unlabelled data since we compare K pairs of source

distributions instead of individual samples. We approximate pks and outqkφ using

batches of samples from the source dataset Dks and the unlabelled mixture

dataset Du, respectively.

3.2.1.1 Measurement and choice of divergence

To determine Lu, we need to choose a divergence D and a method to re-estimate

it after each separator training step since outqφ changes. One possibility is to

choose the Jenson-Shannon (JS) or Kullback-Leibler (KL) divergence as D and

use a discriminator network Dθk for each source k that distinguishes separator

from real samples to estimate each divergence - note that the connection between

KL and JS divergences and discriminator training is non-trivial, see Goodfellow

et al. [2014] for details. With this choice, our unsupervised loss is similar to

generative adversarial networks (GANs) [Goodfellow et al., 2014], but we use

one discriminator for each source instead of only one, and our “generator” qφ

receives mixtures as input instead of random noise.

The original GAN [Goodfellow et al., 2014] is known to be unstable [Arjovsky

and Bottou, 2017] since KL and JS divergences can grow to infinity for pairs

of distributions that do not overlap. This likely applies to our setting as well,

since we use finite sets of samples for outqkφ and pks so they become dirac-like. As

a result, the gradients for the separator can vanish or become arbitrarily large

near the discriminator’s decision boundary, which can destabilise training.

For a stable optimisation, we consider more well-behaved divergences such

as the Wasserstein distance Wp. As discussed by Gulrajani et al. [2017], the

gradient of Wp with respect to the separator output has a bounded norm since

a regularising term Lgrad is applied on the discriminator networks. Thus we

expect separator training to be more stable since the gradient applied to its

output does not vanish or explode.

Following the improved Wasserstein GAN algorithm [Gulrajani et al., 2017],

we use one discriminator network Dθk for each source k to approximate the

distance Wp[
outqkφ||pks ], thereby implementing the unsupervised loss from Equa-

tion (3.4). We modify the gradient penalty for the discriminator to be one-sided
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since it enabled faster convergence in our experiments:

Lgrad = Ex∼p̂ max(||∇xDθk(x)||2 − 1, 0)2 (3.5)

Sampling from p̂ involves randomly interpolating between pairs of points sampled

from the data and the generator distribution. We use the Wasserstein distance

for all following experiments due to instabilities we observed in initial tests using

the KL and JS divergences.

3.2.1.2 Additive penalty

For all unlabelled mixtures mu
i , we also aim to ensure that source estimates

add up to the mixture, so that
∑K
k=1 fφ(mu

i )k ≈ mu
i . If we know this additive

property holds exactly in the true distribution p, and fφ is constrained to

only output estimates satisfying this constraint, no additional loss is needed.

When using spectrograms, this relationship is only approximate due to phase

interference, so we do not constrain the network output fφ(m) while minimising

the loss

Ladd =
1

U

U∑
i=1

||

(
K∑
k=1

fφ(mu
i )k

)
−mu

i ||2 (3.6)

which is equivalent to maximising
∑U
i=1 log p(mu

i |fθ(mu
i )) as likelihood term

when assuming p(m|s) is an isotropic Gaussian N (m|
∑K
k=1 sk;σ2I). Since we

are considering aggregate priors with Lu and a likelihood term p(m|s) with Ladd,

our overall unsupervised training exhibits similarities to variational inference

with qφ as inference network that aims to approximate the posterior of the

generative model p(s,m) = p(m|s)
∏K
k=1 p

k
s (sk).

3.2.1.3 Semi-supervised loss

Overall, we minimise the total separator loss L = Ls +αLu +βLadd by stochastic

gradient descent. For this, we use a batch of multi-track samples from Dm to

compute Ls in the common supervised fashion, as shown in Figure 3.1a. We also

use a batch of unlabelled mixtures from Du to determine the unsupervised loss

Lu, as seen in Figure 3.1b. Finally, the additive penalty Ladd is also computed

based on Equation (3.6) if needed – otherwise, the computation is omitted and

β is simply set to zero.

After each separator update, we take Ndisc gradient steps for each discrim-

inator Dθk to estimate the divergence Wp[
outqkφ||pks ] using one shared batch

of unlabelled mixtures to generate source estimates and one batch from the

respective source dataset Dks . The scalars α and β are weights for the loss terms

and constitute hyper-parameters.
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3.2.2 Singing voice separation experiment

3.2.2.1 Initial considerations

Since the accompaniment in singing voice separation has a very complex dis-

tribution, it is harder for the discriminator to estimate the divergence D for

the accompaniment than it is for the singing voice. Therefore, we conducted

one experiment without the accompaniment discriminator. Note that after

removing a divergence term from the unsupervised loss Lu it still represents a

necessary, albeit weaker, condition for an optimal separator. This is because

the optimal separator would still have an unsupervised loss of Lu = 0. In other

words, the global minima of the original unsupervised loss are retained after

removing a divergence term. However, this change creates more global minima

with imperfect separators, and in practice we may not find a global minimum

at all. This could bias solutions towards favouring vocal over accompaniment

quality.

3.2.2.2 Datasets

We use the training partition of the DSD100 [Liutkus et al., 2017] database as

our supervised training set Dm. We split the multi-track databases iKala [Chan

et al., 2015], MedleyDB [Bittner et al., 2014] and CCMixter [Liutkus et al.,

2015] into thirds, and use one third of the tracks from each database to form the

unlabelled dataset Du and the source datasets Dks needed for semi-supervised

training. Our validation and test sets are built by taking another third of the

tracks from iKala, MedleyDB, and CCMixter, in addition to 25 tracks from the

test partition of DSD100. The supervised and unsupervised sets have different

sampling biases to enable testing the regularization effect of our semi-supervised

approach more directly. We use multi-track data for the unsupervised set despite

their known pairing to eliminate dataset bias as a confounding factor, ensuring

that differences between the separator output outqφ and the source dataset

distributions stem from the separator. Large databases such as DAMP [Smith,

2013] could be used as unsupervised data, but this study aims at demonstrating

a first proof-of-concept and thus does not feature such datasets. Additionally,

qualitative differences between such unsupervised data and multi-track stems, for

example in recording quality, might limit the potential performance gains of our

approach as it assumes the same distribution for supervised and unsupervised

data.
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3.2.2.3 Experimental setup

Preprocessing The audio input is converted to mono and downsampled to 8

kHz to reduce dimensionality, before the magnitude spectrogram is computed

from a 512-point FFT with 50% overlap, and normalized by x→ log(1 + x). For

the unsupervised dataset, we multiply the magnitudes by a factor uniformly

drawn from the interval [0.2, 1.2] to make the source discriminators less sensitive

to loudness differences. We randomly draw 64 spectrogram excerpts for each

batch.

Separator architecture The separator architecture follows the U-Net [Ron-

neberger et al., 2015, Jansson et al., 2017] closely and uses 3× 3 convolutional

filters. After a first convolutional layer with 16 filters, 4 downsampling layers

perform max-pooling by a factor of 2 followed by a convolution with twice as

many filters as the previous layer. The 4 upsampling layers perform transposed

convolution with a stride of 2, crop and concatenate the feature map from the

respective downsampling layer, before applying another transposed convolution.

The last feature map is concatenated with the mixture input so it can be

used as a basis for the output, before K separate 1x1 convolutions are applied,

one for each source. After applying ReLU activations, the K feature maps

form the K log-normalised source estimates, which are directly input to the

discriminators. To generate the final source signals, we use an inverse STFT

using the phase from the mixture input. Since the U-Net requires additional

context to make predictions at the centre of its input, we use valid convolutions,

add temporal context to the input and zero-pad along the frequency axis. We

input 158 350-dimensional time frames to retrieve 66 256-dimensional time frames

as output.

Discriminator architecture The source discriminators have log-normalised

magnitude spectrograms as input and follow the DCGAN architecture [Radford

et al., 2015] with Leaky ReLU activations and 32 convolutions in the first layer,

with zero-padding in time and frequency. Since the input samples have more

frequency bins than time frames, we use two convolutional layers with 4×2 filters

and 2× 1 stride after the first four layers to detect relationships across frequency

bands, before computing 32 dense activations and finally a single linear output.

Training procedure We train the separator and the discriminators on an

NVIDIA GTX1080 graphics card using the ADAM optimiser with a learning

rate of 5 · 10−5. Training is stopped if validation performance does not increase

after more than six epochs, with 1000 separator update steps in each epoch.

Finally, the model with the best validation loss is selected.
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Metric Baseline V VA

SDR Inst. 8.09 8.89 8.55
SDR V. 6.80 7.28 7.47
SIR Inst. 12.03 12.58 12.67
SIR V. 13.72 14.00 14.45

SAR Inst. 11.27 12.05 11.40
SAR V. 8.54 9.00 9.04

Table 3.1: Mean performance comparison on the test set (22 instrumental tracks
excluded, mono, 8 kHz sampling rate) using the supervised baseline, a vocal
discriminator (V) and both vocal and accompaniment discriminators (VA)

A baseline model is trained using only the supervised loss in the log-norma-

lised magnitude space. Then, we train a network with the same architecture

using our semi-supervised approach with α = 0.01, but without accompaniment

discriminator. Finally, we use both discriminators and a lower α = 0.001. Each

time, we set β = α. We use low values for α since the losses are not normalised to

the same scale by default and in initial tests the loss occasionally plateaued during

training, likely due to local minima in the unsupervised loss. Discriminators

are trained for Ndisc = 5 iterations per separator update to re-estimate the

respective Wasserstein distance.

3.2.2.4 Evaluation

Quantitative results For evaluation, we calculate the track-wise (normalised)

SDR, SIR, and SAR metrics [Vincent et al., 2006], with mono estimates and

target signals sampled at 8 kHz. Table 3.1 shows averages over the test set

and Table 3.2 over subsets containing only tracks from a specific data source.

On the full test set, the purely supervised method (‘Baseline’) is consistently

improved upon across every metric by our method, both with and without an

accompaniment discriminator. The baseline method is only better on the DSD100

subset, likely because the supervised set contains only DSD100 training samples,

which can be viewed as overfitting. On all other datasets our method yields

improvements, especially on the iKala dataset, showing we can train the separator

on these samples despite not knowing their input-output pairings. Therefore our

unsupervised loss can be a surrogate for the supervised loss enabling learning

from unlabelled mixture and source datasets.

Qualitative analysis For an intuition about the discriminator’s behaviour,

Figure 3.2(a) shows an exemplary vocal estimate from the separator during

training, where white denotes high energy. Next to a strong singing voice

with vibrato, accompaniment interference is visible as straight, horizontal lines.
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DSD100 MedleyDB

Metric Baseline V VA Baseline V VA

SDR Inst. 11.11 10.75 10.76 9.40 9.60 9.65
SDR V. 3.74 3.17 3.54 2.48 2.43 3.00
SIR Inst. 14.46 13.56 13.86 12.18 12.07 12.74
SIR V. 10.03 9.92 10.49 9.40 9.21 9.48

SAR Inst. 14.20 14.60 14.10 13.94 14.23 13.45
SAR V. 5.50 4.84 5.12 4.71 4.69 5.20

CCMixter iKala

Metric Baseline V VA Baseline V VA

SDR Inst. 10.65 11.09 10.89 6.34 7.71 7.13
SDR V. 3.25 3.52 3.70 9.50 10.47 10.52
SIR Inst. 15.99 15.49 16.08 10.42 11.79 11.57
SIR V. 8.39 8.94 9.35 16.98 17.44 17.90

SAR Inst. 12.84 13.69 13.24 9.43 10.42 9.70
SAR V. 6.43 6.17 6.17 10.81 11.83 11.73

Table 3.2: Mean test set performance comparison on subsets of the test set using
the supervised baseline, using a vocal discriminator (V) and using both vocal
and accompaniment discriminators (VA)

The discriminator was successfully trained to output large values for real and

low values for separator samples: The gradient with respect to the input is

positive (shown in white) for vocal parts and negative (shown in black) for the

accompaniment artefacts. Therefore the separator is encouraged to attenuate

the accompaniment and amplify the voice content to make the voice output more

realistic.

3.2.3 Discussion and Conclusion

We presented a semi-supervised framework for ASS. In addition to supervised

training on multi-track data, we introduce an unsupervised loss on unlabelled

mixtures driving the separator to minimise a divergence between its output

distribution and the real source distribution, for each source. The divergence for

each source is estimated by its own discriminator continually trained to distin-

guish real source samples from separator predictions. Our framework is scalable

since it can acquire complex source priors from large amounts of unlabelled data

while making only few assumptions about the source characteristics.

For singing voice separation, we show an increase in performance compared

to purely supervised training. However, performance can also be reduced if the

unlabelled data is too scarce or does not come from the same distribution as

the test set. Therefore, we used multi-track datasets as our unlabelled data in
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Figure 3.2: (a) A separator voice estimate x. (b) Gradients of the voice discrim-
inator output with respect to the input x. Only the lower frequency range is
shown.

our initial experiment to avoid this confounding factor, but datasets such as

DAMP [Smith, 2013] could be included if the dataset bias is slight or can be

controlled.

Future work could involve applying our framework to multi-instrument sepa-

ration due to the highly structured priors for many sources. Our semi-supervised

approach also allows training larger separator models that would not generalise

sufficiently when trained on multi-track data alone. Finally, discriminator archi-

tectures could be adapted to better distinguish separator from real samples and

to be less sensitive to the inherent source variability.

Our approach brings noticeable performance improvements in a missing data

scenario for ASS. However, it is unsatisfying from a theoretical perspective to

combine a supervised loss (such as the MSE loss) with an unsupervised adversarial

loss, since it becomes very difficult to characterise the optimal solution for the

generator. The supervised and unsupervised losses might “contradict” each

other, so that the optimal solutions to the supervised objective do not overlap

with the optimal solutions to the unsupervised objective. More specifically, an

MSE loss drives the model to output the mean of the posterior distribution,

while a GAN objective encourages picking a mode instead.

In the next Section, we will develop a fully adversarial approach to the same

problem, and show that it can be applied in other domains such as computer

vision.

3.3 Adversarial modelling for missing data

While GANs have become highly effective at synthesising realistic examples even

for complex data such as natural images [Radford et al., 2015, Karras et al.,
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2018b], they typically rely on large training datasets. These are not available in

many cases, especially for prediction tasks such as ASS [Stoller et al., 2018b] or

image-to-image translation [Zhu et al., 2017]. Instead, one often encounters many

incomplete observations, such as unpaired images in image-to-image translation,

or isolated source recordings in source separation. Standard GANs cannot be

trained with these observations.

Recent approaches that work with unpaired data can not make use of addi-

tional paired data [Zhu et al., 2017] or lead to computational overhead due to

additional generators and discriminators that model the inverse of the mapping

of interest [Almahairi et al., 2018, Gan et al., 2017]. For training the generator,

multiple losses are combined whose interactions are not clear and that do not

guarantee that the generator converges to the true distribution. One example

for this is our approach described in Section 3.2, which relies on the assump-

tion that the generator (a source separation model in that particular case) is

deterministic, i.e. only provides a single estimate for the sources, and does not

support probabilistic output densities. In this setting, the use of mean-squared

error as supervised loss alongside the GAN-based unsupervised loss means that

we cannot characterise the optimal solution for the generator, whereas a fully

adversarial framework enables showing that the generator will converge to the

true posterior distribution given enough data and training time.

We adapt the standard GAN framework to enable training predictive models

with both paired and unpaired data as well as generative models with incomplete

observations. To achieve this, we split the discriminator into multiple “marginal”

discriminators, each modelling a separate set of dimensions of the input. As

this modification on its own would ignore any dependencies between these parts,

we incorporate two additional “dependency discriminators”, each focusing only

on inter-part relationships. We show how the outputs from these marginal

and dependency discriminators can be recombined and used to estimate the

same density ratios as in the original GAN framework – which enables training

any generator network in an unmodified form. In contrast to previous GANs,

our approach only requires full observations to train the smaller dependency

discriminator and can leverage much larger and simpler datasets to train the

marginal discriminators, which enables the generator to model the marginal

distributions more accurately. Additionally, prior knowledge about the marginals

and dependencies can be incorporated into the architecture of each discrimina-

tor. Deriving from first principles, we obtain a consistent adversarial learning

framework without the need for extra losses that rely on more assumptions or

conflict with the GAN objective.

In our experiments, we apply our approach (“FactorGAN”) 1 to two image gen-

1Implementation available at https://github.com/f90/FactorGAN
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eration tasks (Sections 3.3.2.1 and 3.3.2.2), image segmentation (Section 3.3.2.3)

and ASS (Section 3.3.2.4), and observe improved performance in missing data

scenarios compared to a GAN. For image segmentation, we also compare to the

CycleGAN [Zhu et al., 2017], which does not require images to be paired with

their segmentation maps. By leveraging both paired and unpaired examples with

a unified adversarial objective, we achieve a substantially higher segmentation

accuracy even with only 25 paired samples compared to GAN and CycleGAN

models.

3.3.1 Method

Firstly, we introduce our method from a missing data perspective below, be-

fore extending it to conditional generation (Section 3.3.1.1) and the case of

independent outputs (Section 3.3.1.2).

Our method builds on the standard GAN by Goodfellow et al. [2014] that is

introduced in Section 2.5.1, using the alternative loss function for the generator

Gφ. In the following we consider the case that incomplete observations are

available in addition to our regular dataset (i.e. simpler yet larger datasets). In

particular, we partition the set of d input dimensions of x into K (2 ≤ K ≤ d)

non-overlapping subsets D1, . . . ,DK . For each i ∈ {1, . . . ,K}, an incomplete

(“marginal”) observation xi can be drawn from pix, which is obtained from px

after marginalising out all dimensions not in Di. Analogously, qix denotes the

i-th marginal distribution of the generator Gφ. Next, we extend the existing

GAN framework such that we can employ the additional incomplete observations.

In this context, a main hurdle is that a standard GAN discriminator is trained

with samples from the full joint px. To eliminate this restriction, we note that

D̃(x) can be mapped to a “joint density ratio” px(x)
qx(x)

by applying the bijective

function h : [0, 1)→ R+, h(a) = − a
a−1 . For our approach, we exploit that this

joint density ratio can be factorised into a product of density ratios:

h(D̃(x)) =
px(x)

qx(x)
=
cp(x)

cq(x)

K∏
i=1

pix(xi)

qix(xi)
with

cp(x) =
px(x)∏K
i=1 p

i
x(xi)

and

cq(x) =
qx(x)∏K
i=1 q

i
x(xi)

.

(3.7)

Each “marginal density ratio”
pix(x

i)
qix(x

i) captures the generator’s output quality

for one marginal variable xi, while the cp and cq terms describe the dependency

structure between marginal variables in the real and generated distribution,
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respectively. Note that our theoretical considerations assume that the densities

px and qx are non-zero everywhere. While this might not be fulfilled in practice,

our implementation does not directly compute density ratios and instead relies on

the same assumptions as Goodfellow et al. [2014]. We can estimate each density

ratio independently by training a “sub-discriminator” network, and combine

their outputs to estimate D̃(x), as shown below2.

Estimating the marginal density ratios: To estimate
pix(x

i)
qix(x

i) for each i ∈
{1, . . . ,K}, we train a “marginal discriminator network” Dθi : R|Di| → (0, 1)

with parameters θi to determine whether a marginal sample xi is real or generated

following the GAN discriminator loss in Equation (2.7)3. This allows making

use of the additional incomplete observations. In the non-parametric limit,

Dθi(x
i) will approach D̃i(x

i) :=
pix(x

i)
pix(x

i)+qix(x
i) , so that we can use h(Dθi(x

i)) as

an estimate of
pix(x

i)
qix(x

i) .

Estimation of cp(x) and cq(x): Note that cp and cq are also density ratios,

this time containing a distribution over x in both the numerator and denomi-

nator – the main difference being that in the latter the individual parts xi are

independent from each other. To approximate the ratio cp, we can apply the same

principles as above and train a “p-dependency discriminator” Dp
θp

: Rd → (0, 1)

to distinguish samples from the two distributions, i.e. to discriminate real

joint samples from samples where the individual parts are real but were drawn

independently of each other (i.e. the individual parts might not originate

from the same real joint sample). Again, in the non-parametric limit, its

response approaches D̃p(x) := px(x)

px(x)+
∏K
i=1 p

i
x(x

i)
and thus cp can be approximated

via h ◦ Dp
θp

. Analogously, the cq term is estimated with a “q-dependency

discriminator” Dq
θq

– here, we compare joint generator samples with samples

where the individual parts were shuffled across several generated samples (to

implement the independence assumption).

Joint discriminator sample complexity: In contrast to cq, where the gen-

erator provides an infinite number of samples, estimating cp without overfitting

to the limited number of joint training samples can be challenging. While

standard GANs suffer from the same difficulty, our factorisation into specialised

sub-units allows for additional opportunities to improve the sample complexity.

In particular, we can design the architecture of the p-dependency discriminator

2Since the combination of sub-discriminator outputs is used to update the generator, the
time complexity of each generator training step grows linearly with the number of marginals
K, assuming the time to update each of the K marginal discriminators remains constant.

3Samples are drawn from pix and qix instead of px and qx, respectively.
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to incorporate prior knowledge about the dependency structure4.

Combining the discriminators: As the marginal and the p- and q-depen-

dency sub-discriminators provide estimates of their respective density ratios, we

can multiply them and apply h−1 to obtain the desired ratio D̃(x), following

Equation (3.7). This can be implemented in a simple and stable fashion using

a linear combination of pre-activation sub-discriminator outputs followed by a

sigmoid. We will prove this in the following.

Definition 3.3.1. Sigmoid discriminator output. Let Dθi(x
i) := σ(dθi(x

i)),

where dθi : R|Di| → R for all i ∈ {1, . . . ,K}; analogously define Dp
θp

(x) and

Dq
θq

(x).

Definition 3.3.2. Combined discriminator. Let DC(x) := σ(dpθp(x)− dqθq (x) +∑K
i=1 dθi(x

i)) be the output of the combined discriminator that is used for

training Gφ using Equation 2.8.

Theorem 1. The combined discriminator DC(x) approximates D̃(x). Under

definitions 3.3.1 and 3.3.2 and assuming optimally trained sub-discriminators

(in the non-parametric limit), DC(x) = D̃(x) = px(x)
px(x)+qx(x)

.

Proof. Proof of Theorem 1 using Definitions 3.3.1 and 3.3.2:

DC(x)

= σ

(
dpθp(x)− dqθq (x) +

K∑
i=1

dθi(x
i)

)

=

(
1 + e

−dpθp (x)e
dqθq (x)

K∏
i=1

e−dθi (x
i)

)−1

=

(
1 +

1−Dp
θp

(x)

Dp
θp

(x)

Dq
θq

(x)

1−Dq
θq

(x)

K∏
i=1

1−Dθi(x
i)

Dθi(x
i)

)−1

=

(
1 +

∏K
i=1 p

i
x(xi)

px(x)

qx(x)∏K
i=1 q

i
x(xi)

K∏
i=1

qix(xi)

pix(xi)

)−1

=

(
1 +

qx(x)

px(x)

)−1
=

px(x)

px(x) + qx(x)
.

(3.8)

4If only certain features of a marginal variable influence the dependencies, we can limit the
input to the p-dependency discriminator to these features instead of the full marginal sample
to prevent overfitting.
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3.3.1.1 Adaptation to conditional generation

Conditional generation, such as image segmentation or inpainting, can be per-

formed with GANs by using a generator Gφ that maps a conditional input x1

and noise to an output x2, resulting in an output probability qφ(x2|x1).

When viewing x1 and x2 as parts of a joint variable x := (x1,x2) with

distribution px, we can also frame the above task as matching px to the joint

generator distribution qx(x) := p1x(x1)qφ(x2|x1). Note that this factorisation

is obtained by replacing the marginal distribution q1x with the distribution of

input examples p1x as they are identical. In a standard conditional GAN, the

discriminator is asked to distinguish between joint samples from px and qx,

which requires paired samples from px and is inefficient as the inputs x1 are the

same for both px and qx. In contrast, applying our factorisation principle from

Equation (3.7) to x1 and x2 (for the special case K = 2) yields

px(x)

qx(x)
=

px(x)
p1x(x

1)p2x(x
2)

qx(x)
q1x(x

1)q2x(x
2)

p2x(x2)

q2x(x2)
=
cp(x)

cq(x)

p2x(x2)

q2x(x2)
, (3.9)

suggesting the use of a p- and a q-dependency discriminator to model the

input-output relationship, and a marginal discriminator over x2 that matches

aggregate generator predictions from q2x to real output examples from p2x. Since

the distributions p1x and q1x are equal,
p1x(x

1)
q1x(x

1) = 1 for all inputs x1. The term

does not appear in (3.9) and we do not need a marginal discriminator for x1,

which increases computational efficiency. The above adaptation to conditional

generation can also involve additionally partitioning x2 into multiple partial

observations as shown in Equation 3.7.

3.3.1.2 Adaptation to independent marginals

In case the marginals can be assumed to be completely independent, one can

remove the p-dependency discriminator from our framework, since cp(x) = 1

for all inputs x. This approach can be useful in the conditional setting, when

each output is related to the input but their marginals are independent from

each other. In this setting, our method is related to adversarial ICA [Brakel and

Bengio, 2017]. Note that the q-dependency discriminator still needs to be trained

on the full generator outputs if the generator should not introduce unwanted

dependencies between the marginals.

3.3.1.3 Further extensions

There are many more ways of partitioning the joint distribution into marginals.

We discuss two additional variants (Hierarchical and auto-regressive FactorGANs)
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of our approach in Section 3.3.3.

3.3.2 Experiments

To validate our method, we compare our FactorGAN with the regular GAN

approach, both for unsupervised generation as well as supervised prediction

tasks. For the latter, we also compare to the CycleGAN [Zhu et al., 2017] as

an unsupervised baseline. To investigate whether FactorGAN makes efficient

use of all observations, we vary the proportion of the training samples available

for joint sampling (paired), while using the rest to sample from the marginals

(unpaired). We train all models using a single NVIDIA GTX 1080 GPU.

Training procedure For stable training, we employ spectral normalisation

[Miyato et al., 2018] on each discriminator network to ensure they satisfy a

Lipschitz condition. Since the overall output used for training the generator is

simply a linear combination of the individual discriminators (see Definition 3.3.1),

the generator gradients are also constrained in magnitude accordingly. Unless

otherwise noted, we use an Adam optimiser with learning rate 10−4 and a batch

size of 25 for training all models. We perform two discriminator updates after

each generator update.

3.3.2.1 Paired MNIST

Our first experiment will involve “Paired MNIST”, a synthetic dataset of low

complexity whose dependencies between marginals can be easily controlled. More

precisely, we generate a paired version of the original MNIST dataset5 by creating

samples that contain a pair of vertically stacked digit images. With a probability

of λ, the lower digit chosen during random generation is the same as the upper

one, and different otherwise. For FactorGAN, we model the distributions of

upper and lower digits as individual marginal distributions (K = 2).

Experimental setup We compare the normal GAN with our FactorGAN, also

including a variant without p-dependency discriminator that assumes marginals

to be independent (“FactorGAN-no-cp”). We conduct the experiment with

λ = 0.1 and λ = 0.9 and also vary the amount of training samples available

in paired form, while keeping the others as marginal samples only usable by

FactorGAN. For both generators and discriminators, we used simple multi-layer

perceptrons (Tables 3.3 and 3.4).

To evaluate the quality of generated digits, we adopt the “Frechét Inception

Distance” (FID) as metric [Heusel et al., 2017]. It is based on estimating the

5http://yann.lecun.com/exdb/mnist/
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Layer Input shape Outputs Output shape Activation

FC 50 128 128 ReLU
FC 128 128 128 ReLU
FC 128 1568 56× 28× 1 Sigmoid

Table 3.3: The architecture of our generator on the MNIST dataset. All layers
have biases.

Layer Input shape Outputs Output shape Activation

FC W · 28 128 128 LeakyReLU
FC 128 128 128 LeakyReLU
FC 128 1 1 -

Table 3.4: The architecture of our discriminators on the paired MNIST dataset.
W = 28 for marginal, W = 56 for dependency discriminators.

distance between the distributions of hidden layer activations of a pre-trained

Imagenet object detection model for real and fake examples. To adapt the metric

to MNIST data, we pre-train a classifier to predict MNIST digits (see Table 3.5)

on the training set for 20 epochs, obtaining a test accuracy of 98%. We input

the top and bottom digits in each sample separately to the classifier and collect

the activations from the last hidden layer (FC1) to compute FIDs for the top

and bottom digits, respectively. We use the average of both FIDs to measure

the overall output quality of the marginals (a lower value is better).

Since the only dependencies in the data are digit correlations controlled by λ,

we can evaluate how well FactorGAN models these dependencies. We compute

pD(Dt, Db) as the probability for a real sample to have digit Dt ∈ {0, . . . , 9} at

the top and digit Db ∈ {0, . . . , 9} at the bottom, along with marginal probabilities

ptD(Dt) and pbD(Db) (and analogously qD(Dt, Db) for generated data). Since we

do not have ground truth digit labels for the generated samples, we instead use

the class predicted by the pre-trained classifier. We encode the dependency as

a ratio between a joint and the product of its marginals, where the ratios for

real and generated data are ideally the same. Therefore, we take their absolute

difference for all digit combinations as evaluation metric (lower is better):

ddep =
1

100

9∑
Dt=0

9∑
Db=0

∣∣∣ pD(Dt, Db)

ptD(Dt)pbD(Db)
− qD(Dt, Db)

qtD(Dt)qbD(Db)

∣∣∣ . (3.10)

Note that the metric computes how well dependencies in the real data are

modelled by a generator, but not whether it introduces any additional unwanted
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Layer Input shape Filter Stride Outp. Output shape Activation

Conv 28× 28× 1 5× 5 1× 1 10 28× 28× 10 -
AvgPool 28× 28× 10 2× 2 2× 2 10 12× 12× 10 LeakyReLU

Conv 12× 12× 10 5× 5 1× 1 20 12× 12× 20 -
AvgPool 12× 12× 20 2× 2 2× 2 20 4× 4× 20 LeakyReLU

FC1 320 - - 50 50 LeakyReLU
FC2 50 - - 10 10 -

Table 3.5: The architecture of our MNIST classifier. Dropout with probability
0.5 is applied to FC1 outputs.
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Figure 3.3: Performance with different numbers of paired training samples
and settings for λ compared between GAN and FactorGAN with and without
dependency modelling.

dependencies such as top and bottom digits sharing stroke thickness, and thus

presents only a necessary condition for a good generator.

Results The results of our experiment are shown in Figure 3.3. Since Factor-

GAN-no-cp trains on all samples independently of the number of paired observa-

tions, both FID and ddep are constant. As expected, FactorGAN-no-cp delivers

good digit quality, and performs well for λ = 0.1 (as it assumes independence)

and badly for λ = 0.9 with regards to dependency modelling.

FactorGAN outperforms GAN with small numbers of paired samples in terms

of FID by exploiting the additional unpaired samples, although this gap closes

as both models eventually have access to the same amount of data. FactorGAN

also consistently improves in modelling the digit dependencies with an increasing

number of paired observations. For λ = 0.1, this also applies to the normal GAN,

although its performance is much worse for small sample sizes as it introduces

unwanted digit dependencies. Additionally, its performance appears unstable

for λ = 0.9, where it achieves the best results for a small number of paired

examples. Further improvements in this setting could be gained by incorporating

prior knowledge about the nature of the dependencies into the p-dependency
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Layer Input shape Filter Stride Outputs Output shape Activation

ConvT 1× 1× 50 4× 4 1× 1 1024 4× 4× 1024 ReLU
ConvT 4× 4× 1024 4× 4 2× 2 512 8× 8× 512 ReLU
ConvT 8× 8× 512 4× 4 2× 2 256 16× 16× 256 ReLU
ConvT 16× 16× 256 4× 4 2× 2 128 32× 32× 128 ReLU
ConvT 32× 32× 128 4× 4 2× 2 64 64× 64× 64 ReLU
Conv 64× 64× 64 4× 4 1× 1 C 64× 64× C Sigmoid

Table 3.6: The architecture of our convolutional generator. “ConvT” represent
transposed convolutions. All layers have biases. The number of output channels
C depends on the task.

discriminator to increase its sample efficiency, but this is left for future work.

3.3.2.2 Image pair generation

In this section, we use GAN and FactorGAN for generating pairs of images in

an unsupervised way to evaluate how well FactorGAN models more complex

data distributions.

Datasets For our experiments, we use the “Cityscapes” dataset [Cordts et al.,

2016] as well as the “Edges2Shoes” dataset [Isola et al., 2016]. To keep the

outputs in a continuous domain, we treat the segmentation maps in the Cityscapes

dataset as RGB images, instead of a set of discrete categorical labels. Each input

and output image is downsampled to 64× 64 pixels as a preprocessing step to

reduce computational complexity and to ensure stable GAN training.

Experimental setup We define the distributions of input as well as output

images as marginal distributions. Therefore, FactorGAN uses two marginal

discriminators and a p- and q-dependency discriminator. All discriminators

employ a convolutional architecture shown in Table 3.7 with W = 6 and H = 6.

To control for the impact of discriminator size, we also train a GAN with

twice the number of filters in each discriminator layer to match its size with

the combined size of the FactorGAN discriminators. The same convolutional

generator shown in Table 3.6 is used for GAN and FactorGAN. Each image pair

is concatenated along the channel dimension to form one sample, so that C = 6

for the Cityscapes and C = 4 for the Edges2Shoes dataset (since edge maps are

greyscale). We make either 100, 1000, or all training samples available in paired

form, to investigate whether FactorGAN can improve upon GAN by exploiting

the remaining unpaired samples or match its quality if there are none.

For evaluation, we randomly assign 80% of validation data to a “test-

train” and the rest to a “test-test” partition. We train an LSGAN discrimi-
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Layer Input shape Filter Stride Outputs Output shape

Conv 2W × 2H × C 4× 4 2× 2 32 2W−1 × 2H−1 × 32
Conv 2W−1 × 2H−1 × 32 4× 4 2× 2 64 2W−2 × 2H−2 × 64
Conv 2W−2 × 2H−2 × 64 4× 4 2× 2 128 2W−3 × 2H−3 × 128
Conv 2W−3 × 2H−3 × 128 4× 4 2× 2 256 2W−4 × 2H−4 × 256
Conv 2W−4 × 2H−4 × 256 4× 4 2× 2 512 2W−5 × 2H−5 × 512
FC 2W−5 · 2H−5 · 512 - - 1 1

Table 3.7: The architecture of our convolutional discriminator. All layers except
FC have biases and LeakyReLU activations. W , H and C are set for each task
so that the dimensions of the input data are matched.
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Figure 3.4: GAN and FactorGAN output quality estimated by the LS metric
for different datasets and numbers of paired samples. Error bars show 95%
confidence intervals.

nator [Mao et al., 2017] with the architecture shown in Table 3.7 (but half the

filters in each layer) on the test-train partition for 40 epochs to distinguish

real from generated samples, before measuring its loss on the test set. We

continuously sample from the generator during training and testing instead of

using a fixed set of samples to better approximate the true generator distribution.

As evaluation metric, we use the average test loss over 10 training runs, which

was shown to correlate with subjective ratings of visual quality [Im et al., 2018]

and also with our own quality judgements throughout this study. A larger

value indicates better performance, as we use a flipped sign compared to Im

et al. [2018]. While the quantitative results appear indicative of output quality,

accurate GAN evaluation is still an open problem and so we encourage the reader

to judge generated examples given in Section 3.3.5.

Results Our FactorGAN achieves better or similar output quality compared to

the GAN baseline in all cases, as seen in Figure 3.4. For the Edges2Shoes dataset,

the performance gains are most pronounced for small numbers of paired samples.

On the more complex Cityscapes dataset, FactorGAN outperforms GAN by a

large margin independent of training set size, even when the discriminators are

closely matched in size. This suggests that FactorGAN converges with fewer

training iterations for Gφ, although the exact cause is unclear and should be
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(a) GAN

(b) FactorGAN

Figure 3.5: Examples generated for the Edges2Shoes dataset using 100 paired
samples

investigated in future work.

We show some generated examples in Figure 3.5. Due to the small number

of available paired samples, we observe a strong mode collapse of the GAN in

Figure 3.5a, as the same shoe is generated multiple times and there is not a

large variety of different shoes overall. On the other hand, FactorGAN provides

high-fidelity, diverse outputs, as shown in Figure 3.5b. Similar observations

can be made for the Cityscapes dataset when using 100 paired samples (see

Figures 3.22a and 3.22b).

3.3.2.3 Image segmentation

Our approach extends to the case of conditional generation (see Section 3.3.1.1),

so we tackle a complex and important image segmentation task on the Cityscapes

dataset, where we ask the generator to predict a segmentation map for a city

scene (instead of generating both from scratch as in Section 3.3.2.2).

Experimental setup We downsample the scenes and segmentation maps to

128× 128 pixels and use a U-Net architecture [Ronneberger et al., 2015] (shown

in Table 3.8 with W = 7 and C = 3) as segmentation model. For FactorGAN,

we use one marginal discriminator to match the distribution of real and fake

segmentation maps to ensure realistic predictions, which enables training with

isolated city scenes and segmentation maps. To ensure the correct predictions

for each city scene, p- and q-dependency discriminators learn the input-output

relationship using joint samples, both employing the convolutional architecture
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Layer Input (shape) Outputs Output shape

DoubleConv1 2W × 128× C 32 2W × 128× 32
MP1 2W × 128× 32 32 2W−1 × 64× 32

DoubleConv2 2W−1 × 64× 32 64 2W−1 × 64× 64
MP2 2W−1 × 64× 64 64 2W−2 × 32× 64

DoubleConv3 2W−2 × 32× 64 64 2W−2 × 32× 128
MP3 2W−2 × 32× 128 128 2W−3 × 16× 128

DoubleConv4 2W−3 × 16× 128 256 2W−3 × 16× 256
MP4 2W−3 × 16× 256 256 2W−4 × 8× 256

DoubleConv5 2W−4 × 8× 256 256 2W−4 × 8× 256

FC 50 2W−4 · 16 2W−4 × 8× 2
Concat DoubleConv5 - 2W−4 × 8× 258

UpConv 2W−4 × 8× 258 256 2W−3 × 16× 258
Concat DoubleConv4 514 2W−3 × 16× 514
Conv 2W−3 × 16× 514 128 2W−3 × 16× 128

UpConv 2W−3 × 16× 128 128 2W−2 × 32× 128
Concat DoubleConv3 256 2W−2 × 32× 256
Conv 2W−2 × 32× 256 64 2W−2 × 32× 64

UpConv 2W−2 × 32× 64 64 2W−1 × 64× 64
Concat DoubleConv2 128 2W−1 × 64× 128
Conv 2W−1 × 64× 128 32 2W−1 × 64× 32

UpConv 2W−1 × 64× 32 32 2W × 128× 32
Concat DoubleConv1 64 2W × 128× 64
Conv 2W × 128× 64 32 2W × 128× 32

Conv 2W × 128× 32 C 2W × 128× C

Table 3.8: The architecture of our U-Net. Height H and number of input
channels C depends on the experiment. MP is maxpooling with stride 2. FC
has noise as input. UpConv performs transposed convolution with stride 2.
DoubleConv is shown in Table 3.9. Concat concatenates the current feature map
with one from the downstream path. The final output is computed depending
on the task (see text for more details)

shown in Table 3.7. Note that as in Section 3.3.2.2, we output segmentation

maps in the RGB space instead of performing classification. In addition to the

MSE in the RGB space, we compute the widely used pixel-wise classification

accuracy [Cordts et al., 2016] by assigning each output pixel to the class whose

colour has the lowest Euclidean distance in RGB space.

Using the same experimental setup (including network architectures), we also

implement the CycleGAN [Zhu et al., 2017] as an unsupervised baseline. For

the CycleGAN objective, the same GAN losses as shown in (2.7) and (2.8) are

used6.

6Code to perform one training iteration and default loss weights were taken from the official
codebase at https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix

65

https://github.com/junyanz/pytorch-CycleGAN-and-pix2pix


Layer Input shape Outputs Output shape

Conv W ×H × C C
2 W ×H × C

2

BatchNorm & ReLU W ×H × C
2 - W ×H × C

2

Conv W ×H × C
2

C
2 W ×H × C

2

BatchNorm & ReLU W ×H × C
2 - W ×H × C

2

Table 3.9: The DoubleConv neural network block used in the U-Net. Conv uses
a 3× 3 filter size.
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Figure 3.6: MSE (left) and accuracy (right) obtained on the Cityscapes dataset
with different numbers of paired training samples for the GAN and FactorGAN

Results The results in Figure 3.6 demonstrate that our approach can exploit

additional unpaired samples to deliver better MSE and accuracy than a GAN

and less noisy outputs as seen in Figure 3.7. When using only 25 paired samples,

FactorGAN reaches 71.6% accuracy, outperforming both GAN and CycleGAN

by an absolute 17.7% and 14.9%, respectively. CycleGAN performs better

than GAN only in this setting, and increasingly falls behind both GAN and

FactorGAN with a growing number of paired samples, likely since GAN and

FactorGAN are able to improve their input-output mapping gradually while

CycleGAN remains reliant on its cycle consistency assumption. These findings

suggest that FactorGAN can efficiently learn the dependency structure from

few paired samples with more accuracy than a CycleGAN that is limited by its

simplistic cycle consistency assumption.

3.3.2.4 Audio source separation

We apply our method to audio source separation as another conditional generation

task. Specifically, we separate music signals into singing voice and accompani-

ment. For this experiment, our generator Gφ takes a music spectrogram m along

with noise z and maps it to an estimate of the accompaniment and vocal spectra

a and v, implicitly defining an output probability qφ(a,v|m). We define the

joint real and generated distributions that should be matched as p(m,a,v) and

q(m,a,v) = qφ(a,v|m)p(m). Since the source signals in our dataset are simply
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(a) GAN

(b) FactorGAN

Figure 3.7: Segmentation predictions made on the Cityscapes dataset for the
same set of test inputs, compared between models, using 100 paired samples for
training

added in the time-domain to produce the mixture, this approximately applies to

the spectrogram as well. Therefore, we assume that p(m|a,v) = δ(m− a− v),

where δ is the Dirac delta distribution. We can constrain our generator Gφ to

make predictions that always satisfy this condition, thereby taking care of the

input-output relationship manually, similarly to Sønderby et al. [2017]. Instead

of predicting the sources directly, a mask b with values in the range [0, 1] is

computed, and the accompaniment and vocals are estimated as b �m and

(1− b)�m, respectively. As a result, q(m|a,v) = p(m|a,v), so we can simplify

the joint density ratio to

p(m,a,v)

q(m,a,v)
=
p(a,v)p(m|a,v)

q(a,v)q(m|a,v)
=
p(a,v)

q(a,v)
=
cp(a,v)

cq(a,v)

p(a)

q(a)

p(v)

q(v)
, (3.11)

meaning that the discriminator(s) in the GAN and the FactorGAN only require

(a,v) pairs, but not the mixture m as additional input, as the correct input-

output relationship is already incorporated into the generator. Furthermore,

the last equality suggests a FactorGAN application with one marginal discrim-
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Figure 3.8: GAN and FactorGAN separation performance for different numbers
of paired samples

inator for each source along with dependency discriminators to model source

dependencies.

Dataset We use MUSDB [Rafii et al., 2017] as multi-track dataset for our

experiment, featuring 100 songs for training and 50 songs for testing. Each song

is downsampled to 22.05 kHz before spectrogram magnitudes are computed,

using an STFT with a 512-sample window and a 256-sample hop7. Snippets

with 128 timeframes each are created by cropping each song’s full spectrogram at

regular intervals of 64 timeframes. Thus, the generator only separates snippets

m ∈ R256×128
≥0 and outputs predictions of the same shape, however this does not

change the derivation presented in Equation (3.11), and longer inputs at test

time can be processed by partitioning them into snippets and concatenating the

model predictions.

Experimental setup For our generator, we use the U-Net architecture de-

tailed in Table 3.8 with W = 8 and C = 1. We use the convolutional discriminator

described in Table 3.7 with W = 8, H = 7 and C = 1. The source dependency

discriminators take two sources as input via concatenation along the channel

dimension, so they use C = 2.

In each experiment, we vary the number of training songs whose snippets

are available for paired training between 10, 20 and 50 and compare between

GAN and FactorGAN. The spectrograms predicted on the test set are converted

to audio with the inverse STFT by reusing the phase from the mixture, and

then evaluated using the signal-to-distortion ratio (SDR), a well-established

evaluation metric for source separation [Vincent et al., 2006].

Results Figure 3.8 shows our separation results. Compared to a GAN, the

separation performance is significantly higher using FactorGAN. As expected,

FactorGAN improves slightly with more paired examples, which is not the case

7This results in 257 frequency bins but we discard the bin with the highest frequency to
obtain a power of 2 and thus avoid padding issues in our network architectures.
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for the GAN – here we find that the vocal output becomes too quiet when

increasing the number of songs for training, possibly a sign of mode collapse.

Similarly to the results seen in the image pair generation experiments, we suspect

that the FactorGAN discriminator might approximate the joint density D̃(x)

more closely than the GAN discriminator due to its use of multiple discriminators,

although the reasons for this are not yet understood.

3.3.3 Possible extensions

We can decompose the joint density ratio px(x)
qx(x)

in other ways than shown in

Equation 3.7. In the following, we discuss two additional possibilities.

3.3.3.1 Hierarchical FactorGAN

The decomposition of the joint density ratio could be applied recursively, splitting

the obtained marginals further into “sub-marginals” and their dependencies,

which could be repeated multiple times. In addition to training with incomplete

observations where only a single part is given, this also allows making use of

samples where only sub-parts of these parts are given and is thus more flexible

than a single factorisation as used in the standard FactorGAN.

As a demonstration, we split each marginal xi further into a group of Ji

marginals, Ji ≤ |Di|, and their dependencies, without further recursion for

simplicity:

px(x)

qx(x)
=
cp(x)

cq(x)

K∏
i=1

pix(xi)

qix(xi)
=
cp(x)

cq(x)

[
K∏
i=1

cip(x
i)

ciq(x
i)

[
J∏
j=1

pi,jx (xi,j)

qi,jx (xi,j)

]]
. (3.12)

cip and ciq are dependency terms analogous to cp and cq, but only defined on the

marginal variable xi, whose J “sub-marginals” are denoted by xi,1, . . . ,xi,J .

Such a hierarchical decomposition might also be beneficial if the data is

known to be generated from a hierarchical process. We leave the empirical

exploration of this concept to future work.

3.3.3.2 Autoregressive FactorGAN

For a multi-dimensional variable x = [x1,x2, . . . ,xT ] composed of T elements

arranged in a sequence, such as time series data, the joint density ratio can also
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be decomposed in a causal, auto-regressive fashion:

px(x)

qx(x)
=
p1x(x1)

q1x(x1)

T∏
i=2

cp(x
1, . . . ,xi)

cq(x1, . . . ,xi)

pix(xi)

qix(xi)
(3.13)

=
p1x(x1)

q1x(x1)

T∏
i=2

pix(xi|x1, . . . ,xi−1)

qix(xi|x1, . . . ,xi−1)
(3.14)

Note that cp is defined here as p(x)
p(x1,...,xi−1)p(xi) (cq analogously using qx). Equa-

tion (3.13) suggests an auto-regressive version of FactorGAN in which the

generator output quality at each time-step i is evaluated using a marginal dis-

criminator that estimates
pix(x

i)
qix(x

i) combined with dependency discriminators that

model the dependency between the current and all past time-steps.

The final product formulation in Equation (3.14) reveals a close similarity

to auto-regressive models and suggests a modification of the normal GAN with

an auto-regressive discriminator that rates an input at each time-step given

the previous ones. Using a derivation analogous to the one shown in (3.8),

this implies taking the unnormalised discriminator outputs at each time-step,

summing them, and applying a sigmoid non-linearity to obtain the overall

estimate of the probability D̃(x). A similar implementation was used before

by Mogren [2016], attempting to stabilise GAN training with recurrent neural

networks as discriminators, but for the first time, we provide a rigorous theoretical

justification for this practice here.

3.3.4 Discussion and Conclusion

We find that FactorGAN outperforms GAN across all experiments when addi-

tional incomplete samples are available, especially when they are abundant in

comparison to the number of joint samples. When using only joint observations,

FactorGAN should be expected to match the GAN in quality, and it does so

quite closely in most of our experiments. Surprisingly, it outperforms GAN in

some scenarios such as image segmentation even with matched discriminator

sizes – a phenomenon we do not fully understand yet and should be investigated

in the future. For image segmentation, FactorGAN substantially improves seg-

mentation accuracy compared to the fully unsupervised CycleGAN model even

when only using 25 paired examples, indicating that it can efficiently exploit the

pairing information.

Since the p-dependency discriminator does not rely on generator samples

that change during training, it could be pre-trained to reduce computation time,

but this led to sudden training instabilities in our experiments. We suspect

that this is due to a mismatch between training and testing conditions for the
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p-dependency discriminator since it is trained on real but evaluated on fake data,

and neural networks can yield overly confident predictions outside the support

of the training set [Gal and Ghahramani, 2016]. Therefore, we expect classifiers

with better uncertainty calibration to alleviate this issue.

We demonstrated how a joint distribution can be factorised into a set of

marginals and dependencies, giving rise to the FactorGAN – a GAN in which

the discriminator is split into parts that can be independently trained with

incomplete observations. For both generation and conditional prediction tasks

in multiple domains, we find that FactorGAN outperforms the standard GAN

when additional incomplete observations are available. For Cityscapes scene

segmentation in particular, FactorGAN achieves a much higher accuracy than

the supervised GAN as well as the unsupervised CycleGAN, while requiring only

25 of all examples to be annotated.

3.3.5 Generated examples

We will provide examples generated by our trained models in the following.

GAN

factorGAN

100 500 20000

Figure 3.9: Paired MNIST examples generated by GAN and FactorGAN for
different number of paired training samples, using λ = 0.9.
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Figure 3.10: GAN generating image pairs for the Cityscapes dataset using 100
paired samples.

Figure 3.11: GAN (big) generating image pairs for the Cityscapes dataset using
100 paired samples.
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Figure 3.12: FactorGAN generating image pairs for the Cityscapes dataset using
100 paired samples.

Figure 3.13: GAN generating image pairs for the Cityscapes dataset using 1000
paired samples.
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Figure 3.14: GAN (big) generating image pairs for the Cityscapes dataset using
1000 paired samples.

Figure 3.15: FactorGAN generating image pairs for the Cityscapes dataset using
1000 paired samples.
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Figure 3.16: GAN generating image pairs using the full Cityscapes dataset.

Figure 3.17: GAN (big) generating image pairs using the full Cityscapes dataset.
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Figure 3.18: FactorGAN generating image pairs using the full Cityscapes dataset.

(a) GAN (b) FactorGAN

Figure 3.19: Image pairs generated for the Edges2Shoes dataset using 100 paired
samples.

(a) GAN (b) FactorGAN

Figure 3.20: Image pairs generated for the Edges2Shoes dataset using 1000
paired samples.
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(a) GAN (b) FactorGAN

Figure 3.21: Image pairs generated for the Edges2Shoes dataset using all samples
as paired.

(a) GAN (b) FactorGAN

Figure 3.22: Segmentation predictions made on the Cityscapes dataset for the
same set of test inputs, compared between models, using 100 paired samples for
training

(a) GAN (b) FactorGAN

Figure 3.23: Segmentation predictions made on the Cityscapes dataset for the
same set of test inputs, compared between models, using 1000 paired samples
for training

77



(a) GAN (b) FactorGAN

Figure 3.24: Segmentation predictions made on the Cityscapes dataset for the
same set of test inputs, compared between models, using all paired samples for
training

Figure 3.25: CycleGAN generating image pairs for the Cityscapes dataset without
any paired samples.
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3.4 Conclusion

In the previous Sections 3.2 and 3.3, we presented approaches to integrate

additional datasets if they contain a subset of the features contained in the

dataset fully annotated for the task, to increase generalisation. In particular,

we presented an approach to source separation in Section 3.2 that combines

a supervised and unsupervised loss in a simple fashion. Expanding on this

concept, we presented a general, fully adversarial framework for handling our

missing data scenario. It retains the theoretical guarantees of the original

GAN [Goodfellow et al., 2014], so that the generator can be trained in the usual

fashion and can be shown to converge to the desired probability distribution.

We applied the framework to a variety of problems including image generation,

image segmentation and ASS.

In these approaches, we assume the additional data contains some subset of

features as the task dataset. But what if the annotations of each dataset concern

different aspects of the input data, i.e., they are intended to enabling solving

different tasks? In this case, we can not apply the above approaches since the

dataset’s features are different. Therefore, we will investigate multi-task and

meta-learning in the following Section, so that parts of models can be shared

between multiple tasks, which can increase computational efficiency but also

generalisation. We will focus our experiments on MIR tasks in particular, as

they often share considerable overlap between tasks.
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Chapter 4

Learned priors for MIR

4.1 Motivation

Tasks in music information retrieval, such as singing voice separation, singing

voice detection, segmentation or fundamental frequency estimation, are usually

tackled separately [Stöter et al., 2018, Lee et al., 2018, Grill and Schlüter, 2015,

Bittner et al., 2017] – models are trained for each task on a task-specific dataset.

This approach allows the intuitive design of problem-specific priors when working

with traditional ML models, such as hand-crafting particular features. However,

deep learning methods that use no or little feature engineering have shown

impressive performance on problems for which large-scale annotated training

data is available [Krizhevsky et al., 2012], and so MIR researchers have recently

explored DL for MIR. While this has resulted in performance improvements

compared to traditional methods [Schlüter and Böck, 2014, Sigtia et al., 2015,

Grill and Schlüter, 2015], a performance ceiling was quickly reached due to the

lack of available training data for many MIR tasks.

Annotating large-scale datasets for each MIR task would be a costly process.

Therefore, our approach is to use multi-task learning as well as pre-training to

incorporate priors into the model in a data-driven fashion so that it generalises

better and more quickly. In multi-task learning, this is achieved by training the

model to perform a set of different tasks at the same time, usually with some

parts of the model being trained specifically for each task. As a result, model

weights shared between the tasks are regularised as they need to provide features

useful for multiple tasks. In pre-training, we first train the model on a different

set of (labelled or unlabelled) data using a specific loss function. The model

weights obtained from this pre-training stage are then used as initialisation points

for training on each task. The goal is to initialise the DL model in such a way

that it already starts with robust, well generalisable features that can be directly
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used at the beginning of task-specific training so that only few training iterations

on a small amount of labelled data are required to achieve good performance.

In the next Section 4.2, we will describe an initial study aiming to exploit the

similarities between MIR tasks using the specific case of singing voice separation

and singing voice detection. Specifically, we will train a model in a multi-task

fashion to perform both tasks at the same time, with the goal of improving

performance on both tasks. Our second study in Section 4.3 will then turn to

meta-learning as a more advanced form of multi-task learning, where models are

prepared using multiple training tasks in a way that they perform well on unseen

tasks with only little adaptation. Furthermore, we extend our experiments to

include ten MIR tasks, aiming to capture more generally useful musical domain

knowledge in the resulting models as step towards a “universal” MIR model.

4.2 Joint singing voice separation and detection

Overall, vocal detection and separation are usually tackled as separate tasks

despite their commonalities. Thus, a main goal in this section is to explore how

such information can be exploited in training audio-only models that can jointly

detect and separate vocals. First, we use a simple approach for diversifying the

training dataset for a singing voice separation (SVS) model, and observe that

its implicit assumption that all data sources are from the same distribution is

violated due to a bias specific to each dataset. Using a multi-task learning (MTL)

approach, we then propose a model shown in Figure 4.1 that performs SVS and

SVD at the same time and can better account for such biases. The model can

be trained on multi-track recordings in combination with mixtures with vocal

activity labels, and yields predictions on completely unlabelled mixtures. By

allowing the model to exploit correlations between the vocal activity labels and

the source signals, performance is improved for both tasks compared to baseline

models trained with single-task learning (STL). While the overall improvement

remained at a rather low level, we found the effect to be quite consistent – despite

the small size of the datasets involved and their respective biases. We also found

that the most commonly used evaluation metric [Vincent et al., 2006] is flawed

in the sense that improvements on non-vocal sections are not captured, and

propose a simple ad-hoc solution. As an additional contribution, we discuss

the dataset biases we observed in some detail. Overall, based on these findings,

we hypothesise that the joint prediction of source estimates along with side

information such as musical scores in a multi-task setting could be a promising

general direction for further research in music source separation.
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Figure 4.1: Our multi-task model for jointly detecting and separating singing
voice, given the spectrogram of a music piece as input. Tensor shapes are given
in the order of frequency bins, time frames, and feature channels.

4.2.1 Method

As a baseline system for SVS, we implemented a variant of the U-Net described

in Section 4.2.2.2 and shown in Figure 4.1. The approach is similar to that

of Stoller et al. [2018d] and Jansson et al. [2017]. A mask is predicted for

a given spectrogram of a mixture excerpt. During training, audio excerpts

are randomly selected from the multi-track dataset, and converted to a log-

normalised spectrogram representation. The mean squared error (MSE) in

spectral magnitudes between source estimates from the separator and the ground

truth is used as a loss function.

4.2.1.1 Initial approach to SVS: Using additional non-vocal sections

Initially, we attempted to improve SVS performance by adding audio excerpts

from instrumental sections of the SVD dataset to the SVS training set to

increase its diversity. Standard supervised training on a multi-track dataset

entails randomly selecting audio excerpts from the tracks to generate batches of

samples. We changed this procedure so that when encountering an audio excerpt

without vocals, it can be replaced with a randomly chosen non-vocal section from

an additional music database with vocal activity labels. The replacement occurs

with a probability of N
N+M , with N and M being the size of the SVS and SVD

dataset, respectively, to ensure that non-vocal sections are effectively randomly

sampled from both datasets. To train from the additional non-vocal sections,

we set their target accompaniment equal to the magnitudes of the respective

mixture spectrogram, and all target magnitudes of the vocal spectrogram to

zero.

To evaluate separation performance, the average MSE loss shown in Equa-
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tion (4.1) is measured on the test set after training the model with and without

this replacement technique. We performed the above training procedure with

three different set-ups for the SVS and SVD datasets.

In the first experiment, we used the DSD100 [Liutkus et al., 2017] dataset for

SVS training, testing and evaluation. As SVD dataset, we combined the RWC

dataset [Goto et al., 2002] (with annotations by Mauch and Dixon [2014]) and

the Jamendo dataset [Ramona et al., 2008]. We also included a private collection

of Dubstep, Hardstyle, Jazz, Classical and Trance music with 25 songs per

genre. We found that the performance decreased compared to purely supervised

learning. A first suspicion was that a bias in the test set might be responsible

for inaccurate test performance measurements since only DSD100 is used (see

section 4.2.1.2 for details).

To investigate this issue more closely, we conducted a second experiment and

additionally included the MedleyDB [Bittner et al., 2014], CCMixter [Liutkus

et al., 2015] and iKala [Chan et al., 2015] SVS datasets in the validation and

test sets. Compared to the first experiment, the SVS training and test data is

now less well matched, and the test performance gives a more accurate picture

of generalisation capability. Here performance increased considerably using

our technique, strongly indicating that a bias in the SVS training data can be

alleviated by including extra non-vocal sections.

Finally, we distributed the DSD100, MedleyDB, CCMixter and iKala datasets

in equal proportions into training, validation and test set for a more realistic

set-up in which all available multi-track data is used, but in this experiment,

separation performance again decreased using our approach.

These results suggest that the individual datasets are subject to different

biases in the data distribution space, to which our approach is sensitive since

it assumes that all samples come from the same distribution. These biases will

be investigated in more detail in the next section. Another shortcoming of our

approach is that we cannot learn from the additional vocal sections using this

method since we do not have the source audio available.

4.2.1.2 Dataset bias for singing voice separation and detection

Since we are combining data from different sources, it is important to consider the

impact of dataset bias on the performance of models trained on such combined

data. We hypothesised that datasets used for SVD and SVS are each uniquely

biased, which can include properties such as the relative energy of the sources,

overall energy levels and how often vocals occur on average. We computed

metrics for the above for the MedleyDB, DSD100, CCMixter, iKala, Jamendo

and RWC datasets, as they are commonly used for SVD and SVS. Vocals were
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Figure 4.2: Distribution of values for different collections of tracks, for different
properties. Outliers for MedleyDB in b) resulting from instrumental tracks have
been excluded.

considered active if the average absolute amplitude in a 10 ms window exceeded

5 · 10−4. Figure 4.2 shows the distribution of these properties for each dataset,

where metrics have been averaged song-wise.

Clear dataset bias manifests itself in the uneven distribution of values across

datasets. For example, iKala contains relatively loud vocals and very few

instrumental sections, and CCMixter has louder tracks than DSD100 with more

vocals on average. Additionally, even more dataset bias could be present in

features which are more difficult to detect and quantify, such as timbre, language

of the lyrics, music genre, recording conditions or the bleed level for multi-

track recordings. Therefore, it is very difficult to directly prevent models from

overfitting to these biases. We would like to highlight this as a critical problem

for the field of SVS and SVD, since many models are trained on a single dataset

source and thus may not generalise nearly as well as the test scores indicate.

4.2.1.3 Multi-task learning approach

To mitigate problems due to dataset biases, we employ a multi-task learning

(MTL) approach [Caruana, 1998] instead. We augment the separation model

with a component that predicts vocal activity based on a hidden layer of the

separation model. We train the combined model to output the source signals

in the multi-track dataset and the vocal activity labels in the SVD dataset,

respectively, with most parameters being shared for both tasks.

This approach has multiple benefits. Firstly, predicting both outputs based

on a shared hidden representation only assumes that the source output has some

relationship with human-annotated vocal activity labels, but we do not define

it explicitly. For example, temporal inaccuracy in labels could mean that the

beginnings of vocals are annotated as non-vocal. If we force the vocal output

of the separator to be silent for all sections annotated as non-vocal, or use the

approach from Section 4.2.1.1, we give incorrect information to the separator.
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Secondly, a different dataset bias for each task can be accounted for by the

model to some extent with its task-specific components. Thirdly, we exploit the

information present in extra non-vocal and vocal sections. Finally, the trained

model can be used for both SVS and SVD.

For the SVS task, we use the MSE between the separator prediction fφ(m)

for a mixture excerpt m and the true sources s as the loss:

LMSE = E(m,s)∼p1
1

N
||s− fφ(m)||2 (4.1)

where p1 represents the multi-track dataset distribution, which is approximated

by a batch of samples, and N denotes the dimensionality of the joint source

vectors s and fφ(m). For output spectrograms with T time frames, F frequency

bins and K sources, N = T · F ·K.

For the SVD task, we use the binary cross-entropy at each time frame of the

spectrogram excerpt, averaged over time and over data points:

LCE = E(m,o)∼p2
1

T

T∑
t=1

log ptφ(ot|m) (4.2)

where ptφ denotes the probability of the vocal state the model assigns to time

frame t of the audio excerpt with a total of T frames, and p2 describes the

SVD dataset distribution whose samples contain a binary vector o with a vocal

activity label ot at each spectral frame t of the source output spectrogram.

For our MTL model, we combine the two above losses using a simple weighting

scheme:

LMTL = αLMSE + (1− α)LCE. (4.3)

We set α = 0.9 so that experimentally the losses are approximately on the same

scale during training. Although an optimisation of this hyper-parameter might

improve results further, it is omitted here due to computational cost. We also

experimented with a loss function derived from a Maximum Likelihood objective

as shown in Appendix A, but did not obtain better performance.

4.2.2 Evaluation

Next, we describe the experimental evaluation procedure for our MTL approach.

4.2.2.1 Datasets

For the SVS dataset, we use DSD100 with 50 songs each for training and testing,

according to the predefined split. We use the Jamendo dataset for SVD, since it

predominantly contains Western Pop and Rock music, similarly to DSD100, to
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avoid a large dataset bias. Jamendo’s validation and test partitions comprising

30 songs are used for testing, leaving 60 songs for training. This set-up is

intended as a proof of concept of the MTL approach – in this setting even slight

improvements are promising, since vocal activity labels do not directly yield

information on vocal structure, and should translate to larger improvements

given larger SVS and particularly SVD datasets.

4.2.2.2 Model architecture and preprocessing

The audio input is converted to mono and down-sampled to 22050 Hz to reduce

dimensionality, before the magnitude spectrogram is computed from a 512-point

FFT with 50% overlap, and normalised by x→ log(1+x). Excerpts comprised of

222 time frames each are used as input to our model shown in Figure 4.1, which

consists of a base network that branches off into a separation and a detection

network.

The base network closely follows our previous implementation [Stoller

et al., 2018d] of the U-Net [Jansson et al., 2017]. The output of an initial 3× 3

convolution with 16 filters and ReLU non-linearity is fed to a down-sampling

block consisting of max-pooling with size and stride two followed by a 3 × 3

convolution with 32 filters. The down-sampling block is applied three more

times, each time doubling the number of filters, finally yielding a 18× 10× 256

feature map. We then use a 1D convolution with filter size 18×1 before applying

the respectively transposed convolution, and concatenate it with the original

18× 10× 256 feature map to capture frequency relationships. In the following

up-sampling block, a 2 × 2 transposed convolution with 128 filters is applied,

and the output concatenated with the output of the down-sampling block at

the same network depth after centre-cropping it. Lastly, a 3 × 3 convolution

with 128 filters is applied. After applying this up-sampling block another three

times, each time with half as many filters for the convolutions, the resulting

258× 130× 16 feature map is concatenated with the centre-cropped input. The

resulting features are input to the SVS as well as the SVD sub-network.

The output size is smaller than the input size since we use “valid” convolutions

that do not employ implicit zero-padding. Therefore, the mixture naturally

provides additional temporal context processed during convolution, and its

magnitudes are zero-padded in frequency so that the separator output has the

correct number of frequency bins. Unless otherwise stated, Leaky ReLU is used

after all convolutions as the non-linearity to allow for better gradient flow.

In the SVS network, the feature map from the base architecture is trans-

formed into a filtering mask, which is multiplied point-wise with the original

mixture spectrogram magnitudes to yield the source estimates. To generate the
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source audio, we use an inverse STFT using the mixture’s phase, and apply 10

iterations of the Griffin-Lim algorithm [Griffin and Lim, 1984] to further refine

the phase.

The SVD network takes the final feature map from the base architecture

and applies a single F × 1 filter, where F is the number of frequency bins, to

reduce the time-frequency feature map to a single scalar for each time step.

Application of a sigmoid non-linearity yields the probability of the presence of

singing voice at each time step.

4.2.2.3 Experimental set-up and metrics

To identify the impact of our proposed approach in comparison to solving

separation and detection separately, we train and evaluate our network solely

for either SVS or SVD, before comparing to training with the multi-task loss.

Model performance is evaluated on the test dataset every 1000 iterations

and the model with the best performance is selected. Training is stopped after

10,000 iterations without performance improvement. For SVD, we use the area

under the receiver operating characteristic (AU-ROC) to evaluate performance.

For separation, we use the MSE training objective from Equation (4.1) in the

normalised magnitude space, as well as the track-wise SDR, SIR, and SAR

metrics [Vincent et al., 2006] on the audio signals. We select two MTL models

with the best AU-ROC and MSE values, respectively, since best performance is

reached at different training stages.

4.2.2.4 Results

Table 4.1 shows a performance comparison of the considered models. For both

SVD and SVS, we achieve a slight improvement in both AU-ROC and MSE

performance metrics using our model variants. This is promising since the SVD

dataset is small and vocal activity labels are less informative training targets

than the vocals themselves. Therefore, larger datasets could be used in future

work to obtain larger performance increases.

While the MSE on the normalised spectrogram magnitudes improves by about

6%, the mean SDR for vocals and accompaniment does not change significantly.

To find the cause, we analyse the employed implementation for SDR computation

on the DSD100 dataset1 also used in the SiSec source separation evaluation

campaign [Liutkus et al., 2017]. Tracks are partitioned into excerpts of 30s

duration, using 15s of overlap, for which a local SDR value is computed. The

final SDR is the average of the local SDR values. However, for excerpts where at

least one source is completely silent, the SDR has an undefined value of log(0)

1https://github.com/faroit/dsd100mat
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Metric

Vocals Accompaniment

AU-ROC MSE RMS SDR SIR SAR SDR SIR SAR

SVD 0.9239 - - - - - - - -
SVS - 0.01865 0.0194 2.83 5.27 6.88 6.71 14.75 13.25
Ours 0.9250 0.01755 0.0155 2.86 5.56 6.23 6.69 13.24 14.11

Table 4.1: Performance comparison between SVS and SVD baseline and our ap-
proach. “RMS” denotes the root-mean-square error of the vocal signals predicted
for non-vocal sections of the mixture (lower is better). Results significantly better
than the comparison model (p < 0.05) in bold. Significance of the AU-ROC
difference determined with binary labels from all time frames as samples [DeLong
et al., 1988]. A paired Wilcoxon signed-rank test was used for all other metrics.

and is excluded from the final SDR average, so that the model’s performance in

these sections is ignored. This is the case for 79 of 736 excerpts due to non-vocal

sections and is thus a practically relevant flaw of the evaluation metric.

More sophisticated methods such a the one by Vincent [2012] take audio

perception more explicitly into account, but presumably suffer from the same

issue with silent sources, as similar computations are used there as well. As an

ad-hoc solution, we propose computing the source estimate’s energy or ideally

loudness for silent sections of the source ground truth as a simple workaround

and report it in addition to other metrics. Finding a consistent and perceptually

accurate evaluation metric is thus an important unsolved problem, and listening

tests arguably remain important to accurately assess separation quality.

A lower average MSE combined with a stagnating SDR suggests that our

model improves especially on those non-vocal sections excluded from the SDR

calculation. This might occur because negative vocal activity labels allow the

model to learn that many different instruments present in the mixture should

not be treated as vocals. As a result, the model could include less non-vocal

instruments in the predicted vocal output, making it closer to a completely

silent signal during non-vocal sections of the mixture. To test this hypothesis

more explicitly, we take the vocal estimates of the baseline and our model and

compute the average root mean square (RMS) of the 79 excerpts excluded from

SDR computation, as well as the average output over whole songs in the DSD100

dataset. We find that training the model with our multi-tasking approach results

in less energy in the predicted vocal output for non-vocal sections compared

to training it only for SVS (see Table 4.1). This demonstrates that our model

performs better on non-vocal sections and about equally on vocal sections due

to a similar SDR.
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4.2.3 Discussion and Conclusion

We demonstrated that jointly solving the task of singing voice detection and

singing voice separation can improve performance in both tasks and alleviates the

issue of dataset scarcity. Furthermore, we found biases specific to each dataset

that could prevent source separation and detection models from generalising

properly to unseen data. Finally, we discuss a major flaw in the most popular

evaluation metric for source separation [Vincent et al., 2006] related to the

performance measurement in silent sections.

Therefore, further research into improved, perceptually relevant metrics is a

definite need. As a workaround, we propose additionally measuring and reporting

the loudness of the model’s source estimates for sections where the respective

source is silent. Our multi-task approach could be generalised and applied to

mixtures with pitch curve or phoneme annotations of the singing voice, or even to

whole transcriptions of musical sources (see Benetos et al. [2013]). Performance

increases can be expected to be larger especially for the latter case as correct

predictions on one task greatly simplify solving the other one.

In the next section, we will extend our studies to more MIR tasks, to increase

the generality of our findings and use meta-learning instead of multi-task learning

with the goal of performing well on previously unseen MIR tasks with only little

adaptation.

4.3 Meta-learning for MIR tasks

As seen in Section 4.2, solving an additional, related task can act as a prior

that regularises the model to help generalisation. In this section, we extend this

concept to a larger set of tasks, and also make use of meta-learning to find weight

initialisations for a “universal MIR model” so that subsequent task-specific

training leads to good generalisation.

Self-supervised learning [van den Oord et al., 2019] as well as transfer learning

by supervised pre-training [Kong et al., 2020, Choi et al., 2018] were employed

for specific audio tasks before. However, to date there is no exploration of the

benefit of meta-learning applied to a variety of MIR tasks. This is particularly

promising since there exist a number of well-established MIR tasks [IMIRSEL,

2020], which a meta-learning approach could directly use to obtain models that

perform well on previously unseen tasks. In contrast, self-supervised learning

does not make use of data labelled for different tasks at all and relies on the

assumption that the self-supervised objective defined on unlabelled data imbues

the model with information relevant for the actual task(s) of interest. Therefore,

we will investigate the application of meta-learning to MIR in the following.
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4.3.1 Method

In our approach we use generic CNN and RNN architectures as “base models”

along with different “output modules” such as linear layers or attention that are

task-specific and convert the base module output to the dimensionality required

by the particular task. We then adapt the Reptile algorithm [Nichol et al.,

2018] to find a suitable initialisation for the base module parameters, so that

subsequent training on an MIR task with a certain output module quickly leads

to low training error. If meta-learning is successful, it would yield a model that

achieves good performance after a few training steps on a previously unseen MIR

task, yielding better results than training the same model from scratch, thanks to

the prior knowledge about musical structure encoded in the meta-learned weight

initialisation. We will describe the details of the approach in the following.

In all of our experiments, the audio signals are first preprocessed to be at

22.05 KHz sampling rate before taking a 1024-point STFT with a hop size of 512

samples. Finally, the magnitudes of this STFT are log-normalised by applying

x→ log(x+ 1). This yields a T × F matrix, where T represents the number of

time frames, with F = 513 frequency bins each, which is used as input to our

model.

4.3.1.1 Model

The model used for each MIR task consists of two components: a base module

that is shared between the different tasks and also used during pre-training,

whose outputs are fed to a task-specific module whose parameters are randomly

initialised and optimised for the particular task at hand.

As our first base module, we use a bidirectional 3-layer GRU (“BiGRU”)

with 512 hidden units each, as RNNs are very powerful and flexible models

for tasks with sequential input. Since the model consists of a forward and

backward component with 512 hidden units each, we obtain F = 1024 features

per time-step.

As our second base module, we use a simplified U-Net architecture with 7 up-

and downsampling blocks. 512 one-dimensional convolutional filters are used in

each block with a temporal width of 3, producing F = 512 features per spectral

timeframe.

The feature matrix of size T × F is then further processed by a task-specific

module, whose structure depends on the task at hand. We propose three such

modules that cover a wide variety of MIR tasks.

Simple output module This module simply consists of a linear layer that is

applied to the feature vector at each time-frame. It is therefore suited for tasks
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where temporal predictions with high temporal resolution are required, such as

source separation or transcription.

GRU output module This task-specific module consists of a bidirectional

GRU followed by a linear layer applied to each output, and is designed for tasks

in which the predictions are typically made at a much lower resolution than

that of the input spectrogram, for example when predicting the transition points

between segments of a song. The module can be set to subsample the input

features coming from the base module by a given factor K, before processing it

using the GRU.

Global attention output module The third task-specific module makes use

of attention [Bahdanau et al., 2016] to summarise the temporal features from

the base module into one fixed-size feature vector of dimensionality C, which is

useful for classification tasks (where C is the number of classes) such as genre,

artist or mood recognition.

Specifically, two convolutions with F inputs and C outputs are applied in a

convolutional fashion to the base module features over all time-steps, yielding

two T × C feature matrices Fm and Fc. Features in Fm are used to compute

a mask M that determines how strongly the output at each timestep for each

channel should be weighted in the final averaging operation over time:

Mi,j =
exp Fmi,j∑T
t=1 exp Fmt,j

. (4.4)

Afterwards, the C-dim. output vector o is computed as a weighted average over

time-steps, where the weights are provided by the mask and the values by the

content matrix Fc:

oj =

T∑
t=1

Mt,j · Fct,j . (4.5)

This output can then be used as a representation of the whole input excerpt, for

example as input to a cross-entropy loss for classification tasks, when C is set to

the number of classes.

4.3.1.2 Meta-learning approach

Our proposed meta-learning approach is based on the Reptile algorithm [Nichol

et al., 2018]. Reptile updates the weight initialisation φ (the meta-parameter) in

each meta-training iteration (outer loop) as follows. N tasks are randomly drawn

from a given set of tasks, starting with weights φ, for a pre-defined number of k

steps (called inner loop). φ is then adjusted in the direction of the weights that
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are obtained after task-specific training. More specifically, it is updated to

φ← φ+ ε
1

N

N∑
i=1

(φ̃i − φ), (4.6)

where φ̃i is the weight vector obtained after training on task i. This update can

effectively be implemented by using 1
N

∑N
i=1(φ− φ̃i) as the gradient in standard

gradient descent but also other optimisers based on gradient descent, such as

Adam.

Reptile can be straightforwardly applied to task distributions with homoge-

nous tasks that share the same output space, since the same parametric model

can be shared between all tasks. This is the case in the main application scenario

presented in the original Reptile paper [Nichol et al., 2018], where all tasks

involve classification into the same number of classes. However, we aim to tackle

tasks with different numbers of outputs – while tagging requires summarising all

temporal features into one vector of constant size equal to the number of tags,

drum transcription involves making fine-grained predictions over time.

Therefore, we use task-specific output modules as outlined in Section 4.3.1.1

and we incorporate these additional, task-specific parameters into our meta-

learning approach. To match the meta-training scenario with how the model is

deployed at meta-test time (when training on an unseen task using the learned

initialisation), we would ideally re-initialise task-specific parameters at the start

of the inner loop of meta-optimisation before starting task training. However,

we found that this introduces a lot of noise into the updates to φ due to the

randomness of task-specific weight initialisation, which hinders convergence.

Additionally, a large number of task training steps k is needed to adjust the

task-specific parameters before informative changes can be made to the base

model, which would severely slow down training. Due to the above issues, we

instead re-use the task-specific parameters throughout meta-training, so that in

each inner loop, task performance can reliably be improved in only a few update

steps. To match actual task training conditions, we reset the task optimiser’s

state (such as rolling moment data) at the beginning of each inner loop.

4.3.2 Experiments

In our experiments, we pre-train models with the meta-learning objective outlined

in Section 4.3.1 before using the obtained model weights as initialisation points

to adapt the model to a wide variety of MIR tasks.
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4.3.2.1 Tasks

We use ten MIR tasks in total to evaluate the generalisation capability of our

models, which were chosen according to the following criteria.

• When possible, the dataset used for training and evaluating the model

should be easily accessible by the research community.

• The task should be well established within the MIR research community

as well as the corresponding evaluation metrics and procedures.

• The tasks should be relevant to the MIR community, of sufficient difficulty

and cover harmonic, melodic and rhythmic aspects of music signals.

Tagging Music tagging fits our task selection criteria, as it requires the extrac-

tion of many high-level musical features such as genre, mood and instrumentation.

Our experiments generally follow the ones conducted in the “SampleCNN”

work [Lee et al., 2017]. In particular, we use the Magnatagatune (MTAT)

dataset with the same partitioning into training, validation and test set2 to

enable comparison with the state of the art, which focuses on predicting the 50

tags most commonly found in the whole dataset.

In contrast to the other tasks, our model processes the 30 second long audio

excerpts contained in the dataset as a single input example, meaning the audio

is not partitioned further before providing it to the model. To predict a 50-

dimensional vector of tag probabilities for each audio excerpt, we process the

base module features with the task-specific global attention output module. We

use the binary cross-entropy loss independently applied to all tag probabilities,

which is the standard for these multi-label prediction problems, as training loss.

For validation-based early stopping and evaluation, we use the well-established

AU-ROC metric.

Emotion recognition As another more abstract task similar to music tagging,

we include the recognition of induced emotion. More specifically, we use the

Emotify dataset [Aljanaki et al., 2016] which contains a set of songs along with

ratings from multiple participants per song indicating which emotions were felt

out of a total of nine emotions. We set up the task as a regression problem, using

the percentage of participants indicating a particular emotion as continuous

target label in the [0, 1] range.

Experimentally, we broadly follow Jakubik and Kwaśnicka [2018], using the

mean squared error as training objective and reporting Pearson’s R on the test

2https://github.com/jongpillee/music_dataset_split
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set. We use a 3-fold cross-validation, using one partition each for the training,

validation and test set.

Predominant Melody Estimation Our next task is predominant melody

estimation, which can be framed as predicting the fundamental frequency of

the melody over time. We follow the experimental setup outlined by Bittner

et al. [2017], using the same split for the MedleyDB dataset3 and using the same

“MELODY2” annotations as ground truth.

Our model uses the task-specific GRU output module to process the base

model outputs and make time-dependent predictions. The 361-dimensional

predictions at each time-step represent a categorical distribution over musical

pitches, starting with the note C1 at 32.7 Hz, and using six octaves with 60

bins per octave resulting in 20 cents per bin and 360 pitch classes, plus one

representing an “unvoiced” section. One such categorical distribution is predicted

for every spectral frame in the input and therefore every 11 ms with our given

hyper-parameters for the STFT computation.

For training, we use the standard cross-entropy loss used for classification

tasks. To validate the model, we use the “Overall Accuracy” (OA) metric

commonly used for this task [Bittner et al., 2017, 2018]. Given the model

prediction, we compute this metric by taking the class with highest probability

at each time-step, resampling the resulting time-dependent predictions to the

sampling rate of the annotation, converting the pitch classes to cent values,

and processing the result with the respective evaluation functions4 from the

“mir eval” toolbox [Raffel et al., 2014].

Drum transcription To cover the rhythmic dimension of music, we include

the drum transcription task into our task suite. Following the experimental

setup outlined in Vogl et al. [2017], the task is to locate the onset times of hi-hat,

snare and kick drum hits in music recordings. In our experiments, we focus

on the “ENST-Drums” dataset [Gillet and Richard, 2006] as a well established

dataset in the drum transcription literature.

Our model uses the task-specific GRU output module to convert the base

module features into three predicted probabilities at each time-step, one for

each drum instrument. For training, we apply the binary cross-entropy loss

independently to every time-frame and output class, representing a multi-label

task at each time-step. For validation-based early stopping and evaluation, we

3https://github.com/rabitt/ismir2017-deepsalience/blob/

b25e758c04f2313159094c7d29eeabef0665b5bf/outputs/data_splits.json
4We use “resample melody series” for resampling, “to cent voicing” for conversion to cents,

and “overall accuracy” to compute the overall accuracy (OA).
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use the standard F-Measure with a tolerance window of 20ms, using an activation

threshold that maximises the resulting F-Measure.

Segmentation We tackle the problem of music segmentation, or more specifi-

cally, detecting the boundaries between musical segments as done by Grill and

Schlüter [2015]. The difficulty of this task arises due to its high-level nature

(requiring features with a high degree of abstraction such as time-dependent

indicators of mood, instrumentation or motifs), and since it is concerned with

long-term dependencies in the music piece such as the repetitions of segments.

The “SALAMI” dataset [Smith et al., 2011] is used for our experiments,

which contains a large collection of mostly live music recordings along with

timestamps of segment boundaries. We remove start and end boundaries that

lie very close to the beginning and end of the music piece.

For our model, we use the task-specific GRU output module to transform the

base module features into a one-dimensional vector indicating the probability of

a segment boundary at each time-step of the input spectrogram. The output

module is set to a downsampling factor of 43, meaning one prediction is made

for every 23 input steps, resulting in one prediction every 43·512
22050 ≈ 1 second. As

training loss, we use the binary cross-entropy loss as an average over all time-

steps. For validation-based early stopping and evaluation, we use the F-Measure

with a tolerance window of 3 seconds.

Music source separation Our next task we consider is music source separa-

tion. Since it is usually framed as a regression problem, the output dimensionality

of the model is very large, and the output needs to be on a very high temporal

resolution. This is in contrast to previous work on self-supervised, meta-learning

and multi-task learning, which has been focused largely on classification problems,

and so presents a particular challenge in our context.

For our dataset, we use the MUSDB18 dataset since it is used in the SiSec

music source separation challenge and therefore offers direct comparison to

current state-of-the-art methods. As task-specific module, we use the GRU

output module to process the base module features. To train our model, we use

the L1 norm of the difference between the predicted and the true spectrogram

magnitudes, and for validation as well as evaluation we use the standard SDR,

SIR and SAR metrics [Vincent et al., 2006] expressed in dB.

Tempo estimation As another rhythmic task, we include tempo estimation

on the “Giantsteps Tempo” dataset [Knees et al., 2015]. While similar to beat

detection, deriving an accurate global tempo estimate can require aggregating

rhythmic information over the whole music input in the presence of tempo
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fluctuations. We use a 3-fold cross validation, using one partition each for the

training, validation and test set.

We discretise the continuous tempo labels in beats per minute by assigning

them to the nearest of 50 tempo categories with tempo 50 · 1.03i for category

i ∈ {0, . . . , 49}. Following the approach by Schreiber [2018], this allows us to

cast the problem as classification using a cross-entropy loss. For evaluation, we

use accuracy based on the above defined tempo classes (“Accuracy0”), as well as

“Accuracy1” which counts an estimated tempo as correct if it deviates at most

4% from the ground truth tempo in either direction.

Singing voice detection We include singing voice detection since it is a very

established task in the MIR community [Lee et al., 2018], using the popular

“Jamendo” dataset [Ramona et al., 2008].

We convert the onset and offset times of singing voice annotated in the dataset

to binary sequences over time according to our model’s temporal output rate,

with a target label, indicating presence of singing voice with a 1 and absence

with a 0. To train the model, we use the binary cross-entropy averaged over all

output time-frames. For evaluation, we use the area under the ROC-curve (AU-

ROC measure) to estimate performance independent of the chosen classification

threshold.

Beat detection As a related task to drum transcription and tempo estimation,

we use beat and downbeat detection as another rhythm-oriented task in our

task suite. We use the “GTZAN” dataset [Tzanetakis and Cook, 2002] for our

experiments, using the beat annotations from Marchand et al. [2015]. We use a

3-fold cross-validation, using one partition each for the training, validation and

test sets.

The simple output model with two output channels is used as a task-specific

module to estimate probabilities of down-beat and beat occurring at each input

time-step. Binary cross-entropy is used as a training objective, averaged over

both output channels and input time-steps. To produce predictions, we use a

simple peak picking scheme, whose parameters are optimised on the validation

set (see Section 4.3.2.2 for details). For evaluation, we use the (micro) F-Measure,

with a tolerance window of 0.07 seconds, following the approach by Böck et al.

[2016].

Key detection Detecting the musical key is another important basic task

within MIR, so we include it as a 24-way classification problem (12 halftones

as tonic each with a major and minor mode) in our experiments. We use the

“GiantstepsKey” dataset [Knees et al., 2015] to train our model, using the global
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attention module as task-specific output module. We use a 3-fold cross-validation,

using one partition each for the training, validation and test set. For evaluation

we simply use accuracy as evaluation metric.

4.3.2.2 Training setup

Meta-learning We partition our set of tasks into two sets of five, ensuring

that similar tasks are in different partitions. Set 1 contains beat detection, source

separation, SVD, tagging and tempo detection, while set 2 is comprised of drum

transcription, emotion and key detection, melody estimation and segmentation.

We use this partitioning to evaluate our meta-learning approach in a cross-

validation setting: one set is used as the set of training tasks to learn an optimal

weight initialisation from, before using it for training on the tasks from the other

set to test the performance of our approach on unseen tasks.

To optimise the meta-training objective, we use an ADAM optimiser with

learning rate 10−3 and a total of 10000 training iterations. We linearly anneal

the meta learning rate towards zero over the course of training. We sample

N = 3 tasks in each outer loop iteration to obtain a more stable meta-gradient,

especially as we feature a very diverse set of tasks.

Task training We perform task-specific training with and without pre-trai-

ning the base module. Early stopping is employed using a loss computed on an

additional validation set to prevent over- or under-training the model, enabling

us to ascertain whether pre-training is effective – if it is, we would for example

expect the early stopping to occur sooner with than without pre-training.

Peak picking For segmentation, drum transcription, and beat detection, we

train our model predict onset probabilities at each time-step, but these have

to be converted into a sequence of detected events to obtain predictions. For

this, peak picking is performed on the probability sequences obtained from the

model. Specifically, local maxima are identified as peaks if they exceed a certain

probability threshold t, have a certain minimum distance d to other peaks, and

have a minimum “prominence” p – see the “find peaks” method from the “scipy”

library5 for more details on these parameters.

The above three peak-picking parameters are optimised on the validation set

by a simple grid search to maximise micro F-Measure.

5https://scipy.org/scipylib/
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Figure 4.3: Results of our meta-learning experiments for different network
architectures and tasks, comparing meta-learned weight initialisations to random
ones (trained “from scratch”). The top and bottom rows correspond to task
sets 1 and 2, respectively. Performance metrics for each task are described in
Section 4.3.2.1 (higher is better). For configurations with cross-validation, bars
indicate the mean and and error bars the standard deviation computed across
the folds. Note that some configurations do not feature cross-validation to avoid
using test data for training.

4.3.3 Results

We evaluate the performance of the CNN and RNN model on the ten tasks

outlined in Section 4.3.2.1, when training the models from a random weight

initialisation (“from scratch”), or from an initialisation found by meta-learning

on the task set 1 or 2.

The results for all configurations are shown in Figure 4.3. Overall, meta-

learning appears to provide mixed results in our experimental setting. Oftentimes,

performance is unchanged or even lower when using meta-learning compared to

simply training the model from scratch. We suspect that this might be due to

the number of tasks used for meta-training, which is unusually low compared to

other applications such as few-shot learning [Finn et al., 2017], where many tasks

are automatically constructed. Additionally, our tasks are arguably also more

dissimilar, since they feature different datasets and output spaces. The small

dataset of tasks in combination with the task diversity makes meta-learning very

prone to overfitting to the set of training tasks.

However, there are some cases in which meta-learning improves performance,

most notably on the tempo detection and segmentation tasks. On these tasks,

meta-learning on the task set 1 provides substantial increases in performance

when using the RNN model, and even outperforms all other tested configurations6.

For the tempo task in particular, the beat detection task included in set 1 might

inform the model about the correct metrical level for a song to avoid mistakenly

6These improvements are both significant as shown by paired Wilcoxon tests comparing
sample-wise F-Measures of both models for segmentation (p ≈ 4.8 · 10−16) and sample-wise
binary success outcomes of both models (on the first fold) for tempo estimation (p ≈ 1.1·10−16)
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doubling or halving the tempo prediction.

Overall, these results demonstrate that meta-learning can, in some scenarios,

imbue models with prior knowledge about musical structure to enhance perfor-

mance. However, this effect is not observed in the same context when using

the CNN model, suggesting that model structure has an important effect on

meta-learning outcomes. Due to the large diversity of tasks we consider, the

CNN model might not be sufficiently flexible to transfer knowledge between tasks

with significantly different output structure. On the emotion detection task,

meta-learning appears to help performance as well when using set 1, however

when using the paired Wilcoxon test to compare the series of sample-wise MSE

values achieved by both models on the test set, we did not find a significant

difference between the two models (p = 0.82).

Furthermore, the datasets used for some of the tasks might be “saturated”,

in the sense that label noise or the simplicity of the task means that additional

prior knowledge does not help the model with prediction. For example, we found

label noise to be present in the tagging task, since oftentimes songs do not get

assigned to all the matching tags, but only a subset of them. Still, we achieve an

AU-ROC of 89.51 by training the RNN from scratch, an impressive performance

on par with current state of the art approaches, e.g. Lee et al. [2017] reaching a

maximum performance of 90.55 in the same experimental conditions. Singing

voice detection on the other hand is a relatively simple task, so that not much

annotated data appears to be needed to reach good performance.

4.3.4 Discussion and Conclusion

In the above section, we investigated meta-learning as a potential approach to

improve generalisation of models for MIR tasks, since this has not been explored

in previous literature, and many MIR tasks do not feature large datasets. Our

results indicate that meta-learning has some potential in the field of MIR, with

substantial performance increases in some cases compared to training models

from scratch on the task’s dataset. However, in many cases performance actually

decreases (which is called “negative transfer”). We suspect this happens due to

one or more of the following reasons:

• Overfitting during meta-learning due to the small number and high diversity

of training tasks;

• Choice of DNN architecture – too many or too few parameters, or not

flexible enough to adapt to different task types (classification, time-varying

outputs);
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• Inner-loop optimisation procedure during meta-learning not equivalent to

how the model is trained at test time.

Therefore, future work is required to obtain more consistent performance

improvements using meta-learning. One fundamental step in this direction

would be the development of a large collection of MIR tasks where tasks and

annotations are offered in a standardised format and so can be easily used by

researchers. To simplify the evaluation of meta-learning approaches, it would be

useful to have a single evaluation metric that aggregates all per-task performance

metrics into one number. A major challenge here is that performance metrics

differ between MIR tasks – while some classification tasks such as tagging and

tempo estimation could be evaluated under the same criteria (e.g. classification

accuracy), source separation for example uses SDR values that behave very

differently.

Another difficulty in our experiments is the different complexities of tasks

and the varying amounts of training data available for each task. Ideally, this

should be accounted for by the meta-learning approach, for example by using an

adaptive number of training iterations per task that grows with task complexity

and dataset size. In general, we used only 5 training steps in the inner loop

of meta-learning to simulate the results of training on a particular task at test

time – a value inspired by the most common application of meta-learning found

in literature so far: few-shot learning [Finn et al., 2017]. However, at test time

hundreds or thousands of steps were often needed in our experiments to achieve

optimal performance. This mismatch between train and test time is almost

certainly detrimental to the performance of our meta-learning approach, as it

optimises for the performance achieved after only 5 training steps. Since the

overall time needed for meta-learning is the product of meta-training steps,

inner loop steps, and the number of tasks sampled at each meta-training step, it

is very computationally costly to increase the number of inner loop iterations.

Therefore, future work is needed to investigate other approaches with better

time complexity.

4.4 Conclusion

In this chapter, we developed data-driven priors for MIR models, with the goal

of imbuing these models with musical knowledge to improve their generalisation

capabilities, especially when the amount of labelled training data is limited. To

achieve this, our priors integrate information from multiple related MIR tasks,

so that performance on some set of target tasks is improved, following methods

from multi-task learning [Caruana, 1998] and meta-learning [Finn et al., 2017].
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Note that other approaches, such as self-supervised learning [Chen et al., 2020,

Pascual et al., 2019, Trinh et al., 2019], also present a promising avenue for

future work to build powerful audio and music priors.

In our initial study in Section 4.2, we explore the potential of multi-task

learning for MIR, since it features a large number of inter-related tasks. We choose

singing voice separation and singing voice detection as two particularly closely

related tasks, and train a U-Net model to perform both tasks simultaneously.

We observe a performance increase for both tasks when the model is trained

with the proposed multi-task learning approach, which suggests that including

more MIR tasks might improve performance further, given that the tasks share

enough similarity. However, MTL does not provide guarantees on how trained

models will perform on MIR tasks not seen during training, as it does not learn

how to quickly adapt the model at test time to a given new task. Therefore,

our second, larger study in Section 4.3 features ten MIR tasks with the goal of

encoding more generally applicable music knowledge into the model, and uses

meta-learning to find a suitable weight initialisation so that subsequent training

on a particular task yields good performance after few training iterations. In

contrast to multi-task learning, meta-learning can produce models that also

perform well on unseen tasks, given that the distributions of training tasks

and test tasks are sufficiently similar. In this study, we observe that the meta-

learning approach frequently does not significantly improve the results compared

to training the same model from scratch. However, there are a few notable

exceptions, where performance improvements are surprisingly large, for example

in the case of tempo detection. While the results are not particularly impressive,

this study represents the first attempt at applying meta-learning approaches

to MIR models, which will hopefully spur more research in this area and also

provide initial baseline results that such future work can use for comparison

purposes.

In this chapter, we investigated how to incorporate data-driven priors into

models. To apply such data-driven priors on larger scales (e.g. involving longer

pre-training procedures), we will design efficient, end-to-end models for high-

dimensional sequence inputs such as time-domain audio signals in the following

chapter.
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Chapter 5

Efficient end-to-end models

for temporal data

5.1 Motivation

Feeding training examples directly to “end-to-end” deep models can be beneficial

for model performance since all model components can be jointly optimised

towards the target objective. This is demonstrated by the success of DNNs in

computer vision [Krizhevsky et al., 2012] that process images directly instead

of operating on image features. However, without feature preprocessing, input

dimensionality is often very large for high-resolution data encountered in many

application domains – for example, raw audio data is commonly sampled at 44100

samples per second. With a large input dimensionality and parameter count,

end-to-end DNN models in these domains are very computationally expensive

and also tend to exhibit more overfitting due to the curse of dimensionality.

Due to the above problems, data points are very commonly pre-processed

by extracting relevant features. This reduces the input dimensionality of the

model and improves its generalisation since it can no longer mistakenly pick

up on irrelevant features (noise) in the training data. However, determining

which features are relevant (feature design) is very difficult and requires prior

knowledge that is not always available. Furthermore, the performance of such

models appears to fall behind end-to-end approaches as more labelled data

becomes available1.

In the presence of limited labelled data, techniques to incorporate additional

related data can be applied to large models with little or no feature preprocessing

to improve performance, as demonstrated in Sections 3 and 4. In contrast to

1http://www.incompleteideas.net/IncIdeas/BitterLesson.html
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hand-crafted feature engineering for a small model, this approach is more scalable

as these techniques act as a data-driven model prior whose power increases with

the availability of more data.

To make this approach more usable, we will present novel end-to-end DNN

models that are more computationally efficient by using a carefully designed

architecture. For machine listening applications specifically, we present a model

that does not rely on the feature preprocessing usually used in the field. More

specifically, input audio is almost always first transformed into some kind of time-

frequency representation, normally by taking the magnitudes from a Short-Time

Fourier Transform (STFT) before possibly applying more feature engineering to

reduce its dimensionality. While this can help in developing models with less

prohibitive computational requirements, it also leads to two problems. Firstly,

the phase information is discarded, which could be relevant for solving the task

at hand, thus limiting performance. This is especially the case for tasks like

audio source separation, where even small details in the audio input should be

reflected in the predicted audio output. Secondly, parameters of the spectral

transformation are almost always fixed, so they are likely sub-optimally chosen

for the task. Defining them as hyper-parameters avoids this problem, but incurs

a heavy computational overhead, since hyper-parameter optimisation is slow

in this setting due to the long training time of models. Therefore, it would be

desirable to optimise all parameters jointly instead.

When using raw audio input to avoid the above issues with spectrogram

representations, we face the challenge of capturing long-term dependencies. In

general, capturing long-term dependencies in tasks such as audio source separa-

tion, but also in other domains such as audio or text generation is important:

What occurs in the audio signal at one point in time can still affect its content

seconds or minutes later. Similarly, the content of a paragraph in a novel can

often affect the choice of words much later down the line, which is important

to model for text generation. But for sequence data sampled at high temporal

resolutions such as raw audio, these long-term dependencies can span hundreds

of thousands of timesteps, so it is difficult to model them efficiently.

In this chapter, we will present deep learning models for such high-dimen-

sional sequential data that are end-to-end, i.e. directly map the raw input to the

target output without relying on feature engineering, and also computationally

efficient despite the high input dimensionality. The end-to-end architecture

employs 1D convolutions across the sequential input and gains computational

efficiency by incorporating the slow feature hypothesis [Wiskott and Sejnowski,

2002], which states that for a wide variety of tasks, important features of an

input signal vary only slowly over time. As a result, the computations in many

layers can be performed very sparsely across time (infrequently).
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We will present a non-causal model that implements the above ideas (“Wave-

U-Net”) in Section 5.2 which we apply experimentally to an audio source

separation problem. To adapt the model to auto-regressive sequence modelling,

where the next element in a sequence needs to be predicted given only the

previous ones, we change the convolutions to be causal to prevent the model

from accessing future elements. The resulting “Seq-U-Net” is presented in

Section 5.3, where we show its efficacy in a range of sequence modelling tasks

including symbolic music as well as text and raw audio generation.

5.2 Wave-U-Net

Current methods for audio source separation almost exclusively operate on

spectrogram representations of the audio signals [Huang et al., 2014, Jansson

et al., 2017], as they allow for direct access to components in time and frequency.

In particular, after applying a short-time Fourier transform (STFT) to the input

mixture signal, the complex-valued spectrogram is split into its magnitude and

phase components. Then only the magnitudes are input to a parametric model,

which returns estimated spectrogram magnitudes for the individual sound sources.

To generate corresponding audio signals, these magnitudes are combined with

the mixture phase and then converted with an inverse STFT to the time domain.

Optionally, the phase can be recovered for each source individually using the

Griffin-Lim algorithm [Griffin and Lim, 1984].

This approach has several limitations. Firstly, the STFT output depends

on many parameters, such as the size and overlap of audio frames, which can

affect the time and frequency resolution. Ideally, these parameters should

be optimised in conjunction with the parameters of the separation model to

maximise performance for a particular separation task. In practice, however, the

transform parameters are fixed to specific values. Secondly, since the separation

model does not estimate the source phase, it is often assumed to be equal to

the mixture phase, which is incorrect for overlapping partials. Alternatively, the

Griffin-Lim algorithm can be applied to find a signal whose magnitudes are equal

to the estimated ones, but this is slow and often no such signal exists [Le Roux

et al., 2008], so the result is only an approximation. Lastly, the mixture phase is

ignored in the estimation of sources, which can potentially limit the performance.

Thus, it would be desirable for the separation model to learn to estimate the

source signals including their phase directly.

In an attempt to tackle the above problems, several audio processing models

were recently proposed that operate directly on time-domain audio signals [Luo

and Mesgarani, 2017, van den Oord et al., 2016]. This includes approaches for

speech denoising, which is a task that is closely related to the general audio
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source separation problem [Pascual et al., 2017, Rethage et al., 2017]. Inspired

by these first results, we investigate the potential of fully end-to-end time-domain

separation systems in the face of unresolved challenges. In particular, it is not

clear if such a system will be able to deal effectively with the very long-range

temporal dependencies present in audio due to its high sampling rate. Further,

it is not obvious upfront whether the additional phase information will indeed

be beneficial for the task, or whether the noisy phase might be detrimental

for the learning dynamics in such a system. Overall, we make the following

contributions.

• We propose the Wave-U-Net2, a one-dimensional adaptation of the U-

Net architecture [Ronneberger et al., 2015, Jansson et al., 2017], which

separates sources directly in the time domain and can take large temporal

contexts into account.

• We show a way to provide the model with additional input context to

avoid artifacts at the boundaries of output windows, in contrast to previous

work [Pascual et al., 2017, Jansson et al., 2017].

• We replace strided transposed convolution used in previous work [Jansson

et al., 2017, Pascual et al., 2017] for upsampling feature maps with linear

interpolation followed by a normal convolution to avoid artifacts.

• The Wave-U-Net achieves good multi-instrument and singing voice separa-

tion, the latter of which compares favourably to our re-implementation of

the state-of-the-art network architecture [Jansson et al., 2017], which we

train under comparable settings.

• Since the Wave-U-Net can process multi-channel audio, we compare stereo

with mono source separation performance.

• We highlight an issue with the commonly used Signal-to-Distortion ratio

evaluation metric, and propose a work-around.

It should be noted that we expect the current state of the art model as

presented by Jansson et al. [2017] to yield higher separation quality than what

we report here, as the training dataset used by Jansson et al. [2017] is well-

designed, highly unbiased and considerably larger. However, we believe that our

comparison with a re-implementation trained under similar conditions might be

indicative of relative performance improvements, as both models should scale

similarly with increasing training set size.

2Code available at https://github.com/f90/Wave-U-Net
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Figure 5.1: Our proposed Wave-U-Net with K sources and L layers. With our
difference output layer, the K-th source prediction is the difference between the
mixture and the sum of the other sources (not shown).

5.2.1 Model

Our goal is to separate a mixture waveform M ∈ [−1, 1]Lm× C into K source

waveforms S1, . . . ,SK with Sk ∈ [−1, 1]Ls× C for all k ∈ {1, . . . ,K}, C as the

number of audio channels and Lm and Ls as the respective numbers of audio

samples. For model variants with extra input context, we have Lm > Ls and

make predictions for the centre part of the input.

5.2.1.1 The base architecture

A diagram of the Wave-U-Net architecture is shown in Figure 5.1. It computes

an increasing number of higher-level features on coarser time scales using down-

sampling (DS) blocks. These features are combined with the earlier computed

local, high-resolution features using upsampling (US) blocks, yielding multi-scale

features which are used for making predictions. The network has L levels in

total, with each successive level operating at half the time resolution of the

previous one. For K sources to be estimated, the model returns predictions in

the interval (−1, 1), one for each source audio sample.

The detailed architecture is shown in Table 5.1. Conv1D(x,y) denotes a

1D convolution with x filters of size y. It includes zero-padding for the base

architecture, and is followed by a LeakyReLU activation (except for the final

one, which uses tanh). Decimate discards features for every second time step to
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Block Operation Shape

Input (16384, 1)
DS, repeated for
i = 1, . . . , L

Conv1D(Fc · i, fd)
Decimate (4, 288)

Conv1D(Fc · (L+ 1), fd) (4, 312)

US, repeated for
i = L, . . . , 1

Upsample

Concat(DS block i)
Conv1D(Fc · i, fu) (16834, 24)
Concat(Input) (16834, 25)
Conv1D(K, 1) (16834, 2)

Table 5.1: Block diagram of the base architecture. Shape describes the final
output after potential repeated application of blocks and denote the number
of time steps and feature channels, in that order. Downsampling (DS) block i
refers to the output before decimation. Note that the Upsampling (US) blocks
are applied in reverse order, from level L to 1. Fc is a scalar hyper-parameter
that scales the number of convolutional filters in each layer. fd and fu are
hyper-parameters determining the size of the convolutional filters in the DS and
US blocks, respectively.

halve the time resolution. Upsample performs upsampling in the time direction

by a factor of two, for which we use linear interpolation (see Section 5.2.1.2 for

details). Concat(x) concatenates the current, high-level features with more local

features x. In extensions of the base architecture (see below), where Conv1D does

not involve zero-padding, x is centre-cropped first so it has the same number of

time steps as the current layer.

5.2.1.2 Avoiding aliasing artifacts due to upsampling

Many related approaches use transposed convolutions with strides to upsample

feature maps [Pascual et al., 2017, Jansson et al., 2017]. This can introduce

aliasing effects in the output, as shown for the case of image generation net-

works [Odena et al., 2016]. In initial tests, we also found artifacts when using

such convolutions as upsampling blocks in our Wave-U-Net model in the form of

high-frequency buzzing noise.

Transposed convolutions with a filter size of k and a stride of x > 1 can

be viewed as convolutions applied to feature maps padded with x − 1 zeros

between each original value [Dumoulin and Visin, 2016]. We suspect that the

interleaving with zeros without subsequent low-pass filtering introduces high-

frequency patterns into the feature maps, shown symbolically in Figure 5.2,

which leads to periodic noise in the final output as well. Instead of transposed

strided convolutions, we perform an upsampling step, which ensures temporal

continuity in the feature space, followed by a normal convolution. Although

upsampling can be implemented by interleaving the signal with zeros before
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Convolution
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Upsampling

?
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Figure 5.2: a) Common model (e.g. [Jansson et al., 2017]) with an even number of
inputs (grey) which are zero-padded (black) before convolving, creating artifacts
at the borders (dark colours). After decimation, a transposed convolution
with stride 2 is shown here as upsampling by zero-padding intermediate and
border values followed by normal convolution, which likely creates high-frequency
artifacts in the output. b) Our model with proper input context and linear
interpolation for upsampling from Section 5.2.1.5 does not use zero-padding.
The number of features is kept uneven, so that upsampling does not require
extrapolating values (red arrow). Although the output is smaller, artifacts are
avoided.

low-pass filtering, ideally by convolving with a sinc filter, this is expensive to

compute, so we use linear interpolation instead as an approximation. In initial

tests, we achieved similar performance as measured by the signal-to-distortion

(SDR) metric compared to using transposed convolutions, while avoiding sound

artifacts we observed from the use of transposed convolutions.

5.2.1.3 Architectural improvements

Table 5.1 describes the architecture of the baseline variant of the Wave-U-Net

(Model M1), which uses zero-padding for convolutions and K output convolu-

tions for K sources. In the following, we will describe a set of architectural

improvements designed to increase model performance.

5.2.1.4 Difference output layer

Our baseline model M1 outputs one source estimate for each of K sources by

independently applying K convolutional filters followed by a tanh non-linearity

to the last feature map. In the separation tasks we consider, the mixture signal

is the sum of its source signal components: M =
∑K
j=1 Sj . Since our baseline

model is not constrained in this fashion, it has to learn this rule approximately
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to avoid highly improbable outputs, which could slow down learning and reduce

performance. Therefore, we use a difference output layer to constrain the outputs

Ŝj , enforcing
∑K
j=1 Ŝj = M: only K − 1 convolutional filters with a size of 1 are

applied to the last feature map of the network, followed by a tanh non-linearity,

to estimate the first K−1 source signals. The last source is then simply computed

as ŜK = M−
∑K−1
j=1 Ŝj .

This type of output was also used for speech denoising [Rethage et al., 2017]

as part of an “energy-conserving” loss, and a similar idea can be found very

commonly in spectrogram-based source separation in the form of masks that

distribute the energy of the input mixture magnitudes to the output sources.

Introducing this layer to the baseline model (leading to model M2) should

improve performance in our case, as its additivity assumption is satisfied by our

dataset.

5.2.1.5 Prediction with proper input context and resampling

In previous work [Jansson et al., 2017, Grais et al., 2018, Pascual et al., 2017],

the input and the feature maps are padded with zeros before convolving, so

that the resulting feature map does not change in its dimension, as shown in

Figure 5.2a. This simplifies the network’s implementation, since the input and

output dimensions are the same. Zero-padding audio or spectrogram input

this way effectively extends the input using silence at the beginning and end.

However, taken from a random position in a full audio signal, the information at

the boundary becomes artificial, i.e. the temporal context for this excerpt is given

in the full audio signal but is ignored and assumed to be silent. Without proper

context information, the network thus has difficulty predicting output values

near the beginning and end of the sequence. As a result, simply concatenating

the outputs as non-overlapping segments at test time to obtain the prediction

for a full audio signal can create audible artifacts at the segment borders, as

neighbouring outputs can be inconsistent when they are generated without

correct context information. In Section 5.2.3.2, we investigate this behaviour in

practice.

As a solution, we employ convolutions without implicit padding and instead

provide a mixture input larger than the size of the output prediction, so that the

convolutions are computed on the correct audio context (see Figure 5.2b). This

change is applied to model M2, yielding model variant M3. Due to the reduced

feature map sizes, we constrain the possible output sizes of the network so that

feature maps are always large enough for the following convolution.

Further, when resampling feature maps, feature dimensions are often exactly

halved or doubled [Jansson et al., 2017, Pascual et al., 2017], as shown in
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Figure 5.2a for transposed strided convolution. However, this necessarily involves

extrapolating at least one value at a border, which can again introduce artifacts.

Instead, we interpolate only between known neighbouring values and keep the

very first and last entries, producing 2n − 1 entries from n or vice versa, as

shown in Figure 5.2b. To recover the intermediate values after decimation,

while keeping border values the same, we ensure that feature maps have odd

dimensionality.

5.2.1.6 Stereo channels

To accommodate for multi-channel input with C channels, we simply change

the input M from an Lm × 1 to an Lm ×C matrix. Since the second dimension

is treated as a feature channel, the first convolution of the network takes into

account all input channels. For multi-channel output with C channels, we modify

the output component to have K independent convolutional layers with filter

size 1 and C filters each. With a difference output layer, we only use K − 1

such convolutional layers. We use this simple approach with C = 2 to perform

experiments with stereo recordings and investigate the degree of improvement in

source separation metrics when using stereo instead of mono estimation. It is

added to model variant M3 and denoted as model M4.

5.2.1.7 Learned upsampling for Wave-U-Net

Linear interpolation for upsampling is simple, parameterless and encourages

feature continuity. However, it may be restricting the network capacity too much.

Perhaps, the feature spaces used in these feature maps are not structured so that

a linear interpolation between two points in feature space is a useful point on its

own, so that a learned upsampling could further enhance performance. To this

end, we propose the learned upsampling layer. For a given F × n feature map

with n time steps, we compute an interpolated feature ft+0.5 ∈ RF for pairs of

neighbouring features ft, ft+1 ∈ RF using parameters w ∈ RF and the sigmoid

function σ to constrain each wi ∈ w to the [0, 1] interval:

ft+0.5 = σ(w)� ft + (1− σ(w))� ft+1 (5.1)

This can be implemented as a 1D convolution across time with F filters of size two

and no padding with a properly constrained matrix. The learned interpolation

layer can be viewed as a generalisation of simple linear interpolation, since it

allows convex combinations of features with weights other than 0.5. It is added

to model M4, obtaining model variant M5.
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5.2.2 Experiments

We evaluate the performance of our models on two tasks: Singing voice separation

and music separation with bass, drums, guitar, vocals and “other” instruments

as categories, as defined by the SiSec separation campaign [Liutkus et al., 2017].

5.2.2.1 Datasets

75 tracks from the training partition of the MUSDB [Rafii et al., 2017] multi-track

database are randomly assigned to our training set, and the remaining 25 tracks

form the validation set, which is used for early stopping. Final performance is

evaluated on the MUSDB test partition comprised of 50 songs. For singing voice

separation, we also add the whole CCMixter database [Liutkus et al., 2015] to

the training set.

As data augmentation for both tasks, we multiply source signals with a factor

chosen uniformly from the interval [0.7, 1.0] and set the input mixture as the sum

of source signals. No further data preprocessing is performed, only a conversion

to mono (except for stereo models) and downsampling to 22050 Hz.

5.2.2.2 Training procedure

During training, audio excerpts are sampled randomly and inputs padded ac-

cordingly for models with input context. As loss, we use the mean squared error

(MSE) over all source output samples in a batch. We use the ADAM optimizer

with learning rate 0.0001, decay rates β1 = 0.9 and β2 = 0.999 and a batch size

of 16. We define 2000 iterations as one epoch, and perform early stopping after

20 epochs of no improvement on the validation set, measured by the MSE loss.

Afterwards, the last model is fine-tuned further, with the batch size doubled and

the learning rate lowered to 0.00001, again until 20 epochs without improvement

in validation loss. Finally, the model with the best validation loss is selected.

5.2.2.3 Model settings

For our baseline model M1, we use Lm = Ls = 16384 input and output samples,

L = 12 layers, Fc = 24 extra filters per layer and filter sizes fd = 15 and fu = 5.

Since model M4 performs best ouf of all models M1 to M5, we also apply it to

multi-instrument separation (M6). Models with input context (M3 to M6) have

Lm = 147443 input and Ls = 16389 output samples.

For comparison with previous work, we also train the spectrogram-based

U-Net architecture [Jansson et al., 2017] (U7) that achieved state-of-the-art

vocal separation performance, and a Wave-U-Net comparison model (M7) under

the same conditions, both using the audio-based MSE loss and mono signals
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downsampled to 8192 Hz. M7 is based on the best model M4, but is set to

Lm = 233459 and Ls = 102405 to have very similar output size compared

to U7 (Ls = 98650 samples), Fc = 34 to bring our network to the same size

as U7 (20M param.), and the initial batch size is set to four due to the high

amount of memory needed per sample. To train U7, we backpropagate the error

through the inverse STFT operation that is used to construct the source audio

signal from the estimated spectrogram magnitudes and the mixture phase. We

also train the same model with an L1 loss on the spectral magnitudes (U7a),

following [Jansson et al., 2017]. Since the training procedure and loss are exactly

the same for networks U7 and M7, we can fairly compare both architectures

by ensuring that performance differences do not arise simply because of the

amount of training data or the type of loss function used, and also compare

with a spectrogram-based loss (U7a). Despite our effort to enable an overall

model comparison, note that some training settings such as learning rates used

by [Jansson et al., 2017] might differ from ours (and are partly unknown) and

could provide better performance with U7 and U7a than shown here, even with

the same dataset.

5.2.3 Results

In the following, we will present quantitative results that enable objective model

comparison, before discussing some qualitative observations.

5.2.3.1 Quantitative results

The signal-to-distortion (SDR) metric is commonly used to evaluate source

separation performance [Vincent et al., 2006]. An audio track is usually par-

titioned into non-overlapping audio segments multiple seconds in length, and

segment-wise metrics are then averaged over each audio track or the whole

dataset to evaluate model performance. Following the procedure used for the

SiSec separation campaign [Rafii et al., 2017], these segments are one second

long.

Issues with current evaluation metrics The SDR computation is prob-

lematic when the true source is silent or near-silent. In case of silence, the SDR

is undefined (log(0)), which happens often for vocal tracks. Such segments are

excluded from the results, so performance on these segments is ignored. For

near-silent parts, the SDR is typically very low when the separator output is

quiet, but not silent, although such an output is arguably not a grave error

perceptually. These outliers are visualised using model M5 in Figure 5.3. Since
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Figure 5.3: Violin plot of the segment-wise SDR values on the MUSDB test set
for model M5. Black points show medians, dark blue lines the means.

the mean over segments is usually used to obtain overall performance measures,

these outliers greatly affect evaluation results.

Since the collection of segment-wise vocal SDR values across the dataset is

not normally distributed (compare Figure 5.3 for vocals), the mean and standard

deviation are not sufficient to adequately summarise it. As a workaround, we take

the median over segments, as it is robust against outliers and intuitively describes

the minimum performance that is achieved 50% of the time. To describe the

spread of the distribution, we use the median absolute deviation (MAD) as a

rank-based equivalent to the standard deviation (SD). It is defined as the median

of the absolute deviations from the overall median and is easily interpretable,

since a value of x means that 50% of values have an absolute difference from the

median that is lower than x.

We also note that increasing the duration of segments beyond one second

alleviates this issue by removing many, but not all outliers. This is more

memory-intensive and presumably still punishes errors during silent sections

most.

Model comparison Table 5.2 shows the evaluation results for singing voice

separation. The low vocal SDR means and high medians for all models again

demonstrate the outlier problem discussed earlier. The difference output layer

does not noticeably change performance, as model M2 appears to be only very

slightly better than model M1. Initial experiments without fine-tuning showed a

larger difference, which may indicate that a finer adjustment of weights makes

constrained outputs less important, but they could still enable the usage of

faster learning rates. Introducing context noticeably improves performance, as

model M3 shows, likely due to better predictions at output borders. The stereo

modeling in model M4 yields improvements especially for accompaniment, which
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M1 M2 M3 M4 M5 M7 U7 U7a

Voc.

Med. 3.90 3.92 3.96 4.46 4.58 3.49 2.76 2.74
MAD 3.04 3.01 3.00 3.21 3.28 2.71 2.46 2.54
Mean -0.12 0.05 0.31 0.65 0.55 -0.23 -0.66 0.51

SD 14.00 13.63 13.25 13.67 13.84 13.00 12.38 10.82

Acc.

Med. 7.45 7.46 7.53 10.69 10.66 7.12 6.76 6.68
MAD 2.08 2.10 2.11 3.15 3.10 2.04 2.00 2.04
Mean 7.62 7.68 7.66 11.85 11.74 7.15 6.90 6.85

SD 3.93 3.84 3.90 7.03 7.05 4.10 3.67 3.60

Table 5.2: Test set performance metrics (SDR statistics, in dB) for each singing
voice separation model. Best performances overall and among comparison models
are shown in bold.

Vocals Other

Med. MAD Mean SD Med. MAD Mean SD

3.0 2.76 -2.10 15.41 2.03 1.64 1.68 6.14

Bass Drums

Med. MAD Mean SD Med. MAD Mean SD

2.91 2.47 -0.30 13.50 4.15 1.99 2.88 7.68

Table 5.3: Test performance metrics (SDR statistics, in dB) for our multi-
instrument model M6

may be because its sounds are panned more to the left or right channels than

vocals. The learned upsampling (M5) slightly improves the median, but slightly

decreases the mean vocal SDR. The small differences could be explained by

the low number of weights in learned upsampling layers. For multi-instrument

separation, we achieve slightly lower but moderate performance (M6), as shown

in Table 5.3, in part due to less training data.

U7 performs worse than our comparison model M7, suggesting that our

network architecture compares favourably to the state-of-the-art architecture

since all else is kept constant during the experiments. However, U7 stopped

improving on the training set unexpectedly early, perhaps because it was not

designed for minimising an audio-based MSE loss or because of effects related to

backpropagating gradients through the inverse STFT. In contrast, U7a showed

expected training behaviour using the magnitude-based loss. Our model also

outperforms U7a, yielding considerably higher mean and median SDR scores.

The mean vocal SDR is the only exception, arising since our model has more

outlier segments, but better output the majority of the time.

Models M4 and M6 were submitted as STL1 and STL2 to the SiSec cam-
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Figure 5.4: Power spectrogram (dB) of a vocal estimate excerpt generated by a
model without additional input context. Red markers show boundaries between
independent segment-wise predictions.

paign [Stöter et al., 2018]. For vocals, M4 performs better or as well as almost all

other systems. Although it is significantly outperformed by submissions UHL3,

TAK1-3 and TAU1, all of these except TAK1 used an additional 800 songs for

training and thus have a large advantage. M4 also separates accompaniment

well, although slightly less so than the vocals. We refer to [Stöter et al., 2018]

for more details.

5.2.3.2 Qualitative results and observations

As an example of problems occurring when not using a proper temporal context,

we generated a vocal source estimate for a song with the baseline model M1, and

visualised an excerpt using a spectrogram in Figure 5.4. Since the model’s input

and output are of equal length and the total output is created by concatenating

predictions for non-overlapping consecutive audio segments, inconsistencies

emerge at the borders shown in red: the loudness abruptly decreases at 1.2

seconds, and a beginning vocal melisma is suddenly cut off at 2.8 seconds, leaving

only quiet noise, before the vocals reappear at 4.2 seconds. A vocal melisma with

only the vowel “a” can sound similar to a non-vocal instrument and presumably

was mistaken for one because no further temporal context was available. This

indicates that models without additional input context suffer not only from

inconsistencies at such segment borders, but are also less capable of performing

separation there whenever information from the context is required.

Larger input and output sizes alleviate the issue somewhat, but the problems

at the borders remain. Blending the predictions for overlapping segments [Grais

et al., 2018] is an ad-hoc solution, since the average of multiple predicted audio

signals might not be a realistic prediction itself. For example, two sinusoids
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with equal amplitude and frequency, but opposite phase would cancel each other

out. Blending should thus be avoided in favour of our context-aware prediction

framework.

5.2.4 Discussion and conclusion

We proposed the Wave-U-Net for end-to-end audio source separation without

any pre- or postprocessing, and applied it to singing voice and multi-instrument

separation. A long temporal context is processed by repeated downsampling and

convolution of feature maps to combine high- and low-level features at different

time-scales. As indicated by our experiments, it outperforms the state-of-the-art

spectrogram-based U-Net architecture [Jansson et al., 2017] when trained under

comparable settings. Since our data is quite limited in size however, it would be

interesting to train our model on datasets comparable in size to the one used

by [Jansson et al., 2017] to better assess respective advantages and disadvantages.

We highlight the lack of a proper temporal input context in recent separation

and enhancement models, which can hurt performance and create artifacts, and

propose a simple change to the padding of convolutions as a solution. Similarly,

artifacts resulting from upsampling by zero-padding as part of strided transposed

convolutions can be addressed with a linear upsampling with a fixed or learned

weight to avoid periodic artifacts.

Finally, we identify a problem in current SDR-based evaluation frameworks

that produces outliers for quiet parts of sources and propose additionally reporting

rank-based metrics as a simple workaround. However, the underlying problem of

perceptual evaluation of sound separation results using SDR metrics still remains

and should be tackled at its root in the future.

To also exploit the benefits of the Wave-U-Net approach in sequence modelling

tasks, the network architecture needs to be adapted so it does not access future

samples to predict the output at a given time-step (that is, satisfying the auto-

regressive condition). In the following Section, we will demonstrate how the

Wave-U-Net can be naturally adapted for this setting, giving rise to the “Seq-

U-Net”, which we experimentally compare in a variety of contexts such as text

and raw audio generation.

5.3 Seq-U-Net

Sequence modelling is an important problem central to many application domains,

including language, audio, and video generation [Bai et al., 2018, Yu et al., 2017,

Trinh et al., 2018]. In some of these applications, the sequences can be millions of

time-steps in length (e.g. in the case of audio generation due to the high sampling
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rate of audio signals), and it can be vital to model the long-term dependencies

present in such sequences (for example to be able to repeat a melody in a music

piece that occurred a minute earlier).

This problem is often framed as the task of predicting the next element in a

sequence given all of the elements observed so far, giving rise to auto-regressive

models. Recurrent neural networks (RNNs) are often used in this context since

they can theoretically remember inputs for an arbitrary number of time-steps,

and also offer quick inference at test time as the hidden state carries all the

information about previous sequence elements and only needs to be updated using

the next element. However, in practice, these models can be difficult [Bengio

et al., 1994] and slow [Trinh et al., 2018] to train due to their strictly sequential

nature. More recently, CNNs with dilated filters were shown to be competitive

approaches for sequence modelling. Instead of relying on recurrence to retain

information over a large number of steps, which might be difficult to achieve in

practice, CNNs such as the temporal convolutional network (TCN) [Bai et al.,

2018] and Wavenet [van den Oord et al., 2016] access far-away time-steps more

directly through their dilated filters.

Despite their impressive performance, these architectures suffer from two

issues. Firstly, each convolutional layer operates at the same time resolution

as the input. This results in a high memory usage and training time especially

with long sequences, rendering long-term modelling infeasible even with large

scale, multi-GPU training [van den Oord et al., 2016]. Secondly, inference is

slow as elements have to be predicted sequentially and require a forward pass

through the CNN’s many layers. Although re-using layer outputs from previous

steps helps, all layers still have to be traversed and updated to predict the next

sequence element.

In this context, the “slow feature analysis” [Wiskott and Sejnowski, 2002]

hypothesis states that for a wide variety of tasks, important features of an

input signal vary only slowly over time. This leads to an interesting approach

of increasing efficiency by computing some features at lower sampling rates

compared to the input without compromising model performance. Notably,

U-Nets [Ronneberger et al., 2015] already incorporate the equivalent of this

principle for image processing, by computing features at different time-scales

with two-dimensional convolutions and combining them to make predictions

at the same resolution as the input. We base our model on the Wave-U-Net

described in Section 5.2, as it should be able to process many kinds of temporal

sequences, not just audio signals. We show how to adapt it for our auto-regressive

setting by making all convolutions causal, such that each prediction for the next

time-step can only depend on past inputs.
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As a result, we obtain the “Seq-U-Net”3, a general-purpose network archi-

tecture that is not limited to audio tasks but can be applied to a wide range

of sequence modelling problems – while providing considerable efficiency im-

provements over TCN and Wav enet. Inference is greatly accelerated by only

computing new layer activations if they are not decimated in the downsampling

process. This time-variant processing gives each layer its own “update rate”,

which is in contrast to fully-convolutional TCN and Wavenet approaches. In

particular, we compare to TCN in the context of word- and character-level

language modelling and symbolic music generation. Additionally, we tackle

the task of generating piano music directly in the time-domain and compare

performance with a Wavenet reimplementation using a log-likelihood metric as

well as listening tests. Overall, we find that our architecture achieves competitive

results while requiring less memory and training time.

5.3.1 Method

We present two variants of our multi-scale approach. The first is an adaptation of

the Wave-U-Net to the auto-regressive setting and shown in Section 5.3.1.1. The

second variant, presented in Section 5.3.1.2, further adds residual connections to

stabilise training for tasks with very long-term dependencies such as raw audio

generation.

5.3.1.1 Seq-U-Net

Our model is based on the Wave-U-Net presented in Section 5.2 and shown in

Figure 5.5. The network features L levels of downsampling (DS) and upsampling

(US) blocks, and a convolutional bottleneck and output layer. Each downsampling

block features a convolution, whose outputs are used as a shortcut connection

for the respective upsampling block, followed by another convolution with

stride k to downsample the features across time. Each upsampling block has

a transposed convolution with stride k to upsample the previously obtained

coarse-grained features. The result is concatenated with the features from the

shortcut connection, and input to another convolution to combine high- and

low-level features. We set the stride k to 2 for our experiments. All convolutions

have the same filter width and a LeakyReLU activation followed by Dropout,

except for the output convolution.

Like in the original Wave-U-Net, the convolutional layers do not use zero-

padding so that all model predictions are made with the necessary input context.

As a result, there are more feature frames in the shortcut output of a DS block

than in the output of the transposed strided convolution in the corresponding

3Code available at https://github.com/f90/Seq-U-Net
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Figure 5.5: Architecture diagram of our proposed model. 1D Convolutions are
applied across time with LeakyReLU activations followed by Dropout. Strided
and transposed strided convolutions are used for down- and upsampling the
features, respectively. Since the convolutions do not use padding, the output is
smaller than the input and skip connections need to be cropped at the front.

US block. Zeros are prepended to the beginning of input sequences to allow

predicting the first sequence elements. In the Wave-U-Net, the outputs at each

level of the network are interpreted as features describing the center part of

the input, so the shortcut features are center-cropped before concatenation.

Consequently, source signals are predicted for the center part of the mixture

excerpt.

Our key idea is to interpret the filters as causal instead: the output of a filter

covering input timesteps n− k to n+ k should now help predict input xn+k+1

outside of its receptive field instead of some feature of the input at timestep n,

i.e. the current source audio signal. Therefore, we instead crop the first feature

frames of each shortcut connection to make sure that features are aligned in time

properly. As a result, we obtain an auto-regressive model for sequence modelling,

similar to Wavenet and TCN, but significantly sparser in terms of activations
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Figure 5.6: Compared to TCN (left, two residual blocks), Seq-U-Net (right, one
down- and upsampling block) computes features only at certain intervals to save
memory and training time. Zero-padding is used in the upsampling blocks (white
squares), leading to different computational paths throughout the network (red
squares). The red line indicates feature cropping and concatenation.

due to the decreased resolution in most of the layers.

Fast inference From a signal processing perspective, TCN and Wavenet are

time-invariant systems as they apply the same set of operations at each time step.

Time-invariant processing, however, is not required in autoregressive models.

In contrast, the multi-scale architecture of Seq-U-Net allows us to employ a

time-variant processing scheme (inspired by Koutńık et al. [2014]) that drastically

accelerates inference, as many operations do not have to be computed at every

step: If an output computed for the latest time-step in a DS block is decimated,

only the US blocks on the same or higher resolution need to be updated, since

the input to the other blocks does not change. This means that a block on level

i ∈ {1, . . . , L} only needs to be updated every ki−1 time-steps. To implement

this procedure, all blocks are given an internal clock based on their level to

determine when to compute a new output. To predict the very first sample from

a given context, a normal forward-pass is conducted and caches for the resulting

layer activations are set up before switching to the above step-wise procedure.

5.3.1.2 Residual variant

Since raw audio generation benefits from a large receptive field, we employ much

deeper instances of our model for the experiment in Section 5.3.3.2. With this

increase in layers however, we observed training instability. Residual networks

can be trained stably even with hundreds of layers [He et al., 2015], so we also

propose a residual variant of our model.

Compared to the baseline model from Section 5.3.1.1, we employ an additional

convolution on the input with F output channels, and also use F input and output
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channels for all up- and downsampling blocks to allow for residual connections.

We replace each convolutional layer in the base model with a residual layer

similar to the one in Wavenet [van den Oord et al., 2016], whose outputs y are

given by

y = I(x) + tanh(C1(x)) · σ(C2(x)), (5.2)

where x are the layer inputs, σ is the sigmoid function, Ci applies convolutional

layer i to its input and I processes the input x to provide an identity connection

in case the convolutions change the feature dimensionality. Dropout was omitted

in this variant since overfitting was not a large concern in our audio generation

experiments, but could readily be added to the residual convolutions.

For the convolutions with stride used in the DS blocks, I first decimates

the input x to provide the identity for the residual layer. For the transposed

convolutions with stride in the US blocks, I takes the input and repeats the

feature vector at each time step k − 1 times to perform upsampling4. For both

down- and upsampling, I finally crops the resulting feature sequence at the front

to ensure it matches the number of residual features, which is reduced due to not

using padding for convolutions. To refine the high-resolution shortcut features

using the low-resolution features from the upsampling path, we use the shortcut

as input x and use the concatenation of the shortcut and the upsampled features

as input to the residual convolutions Ci.

To easily scale the network in size for more complex tasks, we employ D + 1

residual layers in each block (one layer for up- or downsampling), with D as

hyper-parameter, allowing features to be processed more flexibly at each time

resolution.

5.3.2 Complexity analysis

We will analyse the memory consumption and computational complexity of our

approach at both training and test time and compare with Wavenet5.

5.3.2.1 Training

Due to the size N of the receptive field increasing exponentially with the number

of layers for the Seq-U-Net and Wavenet, roughly L = logk(N) levels of processing

are required. For the Wavenet, we define k as the factor with which dilation

increases in each layer.

When presented with I ≥ N inputs during training, Wavenet needs to

compute I feature activations in each of the L layers, since it operates on the

4This operation does not violate the auto-regressive condition.
5Comparison with TCN is omitted as it is very similar to Wavenet but differs slightly in

the number of layers per level of resolution

121



same resolution as the input, reaching a total of I · logk(N). The Seq-U-Net

on the other hand computes 3I + I
k feature activations in the first down- and

upsampling block, 3 Ik + I
k2 on the second level, and so on, in addition to a

bottleneck convolution with I
kL

outputs. For the Seq-U-Net, we thus obtain

at most
∑L
i=0 4 I

ki ≤ 8I feature activations regardless of the number of layers6.

The above calculation not only demonstrates the time complexity, but also the

required memory, since the computed feature activations need to be maintained

for the backward-pass.

5.3.2.2 Inference

At test time, auto-regressive models such as Wavenet and Seq-U-Net require

a forward pass to generate the next element in the sequence, which can be

prohibitively slow when sequences are long (e.g. in audio generation) or when a

real-time application is desired. While caching previously computed outputs in

the Wavenet reduces computation time, it still involves evaluating all L layers,

which especially affects deep models (e.g. L = 30 by Kalchbrenner et al. [2018]).

In the Seq-U-Net, each level in the network only has to be updated at certain

intervals as described in Section 5.3.2. In particular, the average number of

levels we have to update for each time-step is
∑L
i=1

1
ki−1 ≤ 2 and thus a constant

number of layers independent of the number of levels L in the network. While

this is an amortised analysis of the average time per step, in the worst case

all layers need to be updated, although this is not relevant for offline sequence

generation.

5.3.3 Experiments and Results

We evaluate our method on a variety of sequence modelling tasks regarding its

performance, training time and memory complexity. Due to the architectural

similarity, we will firstly compare our method with TCN in Section 5.3.3.1

on language modelling as well as symbolic music modelling. To test whether

our model can capture long-term dependencies, we also compare to TCN on a

synthetic copy task and to a Wavenet baseline on the task of audio generation

in the time-domain. Note that the Wave-U-Net can not be used as a baseline

model for these experiments, since it has access to sequence element xt+1 when

predicting the successor to xt and can therefore easily achieve perfect prediction.

For time and memory measurements, we use a single NVIDIA GTX 1080

GPU with Pytorch 1.2, CUDA 9 and cuDNN 7.57. We compare the average time

6This disregards the reduction in size due to not using padding for convolutions since it
occurs in all models

7We use Pytorch’s benchmark mode to find the best algorithm for training each network.
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required for each training step8 and the maximum memory allocated throughout

a training epoch9.

5.3.3.1 Comparison with TCN

We will compare our model against TCN across three sequence modelling tasks.

To match model complexity, we use the same filter length, Dropout rate, and

levels of resolution, which results in very similar receptive field size. Then, the

number of features in each layer is adapted for Seq-U-Net so it matches TCN in

the number of parameters.

We optimise each model for 100 epochs using a batch size of 16 and an Adam

optimiser with initial learning rate α, which is reduced by half if validation

performance did not improve after P epochs and more than 10 epochs have

passed since the beginning of training. Finally, the model that performed best

on the validation set is selected.

To prevent the training procedure from favouring one model over the other,

we perform a hyper-parameter optimisation over the learning rate α ∈ [e−12, e−2]

and optional gradient clipping with magnitudes between [0.01, 1.0]. This hyper-

parameter optimisation is performed for each combination of model and task

using a tree of Parzen estimators10 to find the minimum validation loss. All

hyper-parameters are shown in Table 5.6.

Character-based language modelling We perform character-based lan-

guage modelling, where the task is to predict the next character given a history

of previously observed ones, on the PTB dataset [Marcus et al., 1993]. The

average cross-entropy loss is used as training objective, and patience is set to

P = 5.

For both models, we use 100-dimensional character embeddings with 0.1

Dropout as input, and their output is projected back to character probabilities

using the transposed version of the embedding matrix. We evaluate models using

the bits-per-character (bpc) metric.

As shown in Table 5.4, our model performs as well as its TCN counterpart

in this regard, while requiring 59% less time per training step, and 32% less

GPU memory during training. These results suggest that many of the required

features are on a higher level of abstraction and vary only slowly, e.g. per word

or per sentence, and so do not need to be recomputed for each new character – a

hypothesis also put forth by Chung et al. [2016].

8Extra time due to data loading is not included
9Does not include memory used for purposes such as caching

10“Hyperopt” package: http://hyperopt.github.io/hyperopt/
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Task Model Train Test Time (s) Memory

Char-LM TCN 1.066 1.31 0.0694 445.9
Char-LM Seq-U-Net 1.08 1.30 0.0286 304.9

Word-LM TCN 47.21 108.47 0.0480 580.5
Word-LM Seq-U-Net 40.43 107.95 0.0234 382.1

M-Muse TCN 5.789 6.931 0.0059 108.5
M-Muse Seq-U-Net 5.794 6.969 0.0065 75.3

M-Nott TCN 1.409 2.783 0.0071 73.1
M-Nott Seq-U-Net 1.850 2.97 0.0067 52.5

M-JSB TCN 6.178 8.154 0.0034 13.1
M-JSB Seq-U-Net 6.151 8.173 0.0037 8.2

Piano Wavenet 1.76 1.88 1.4616* 5294*
Piano Seq-U-Net** 1.83 1.93 0.3621* 1514*

* Measurements were taken with a batch size of 2 instead of 16 due to the
high amount of memory required.

** Residual variant

Table 5.4: Performance for Seq-U-Net (lower is better) and comparison models
across different tasks (“M-” indicates symbolic music modelling). Times denote
the duration for a forward- and backward-pass, averaged over a whole epoch.
“Memory” indicates GPU memory consumption in MB

Word-based language modelling For our second experiment, we perform

word-based language modelling, which involves predicting the next word following

a given sequence of words. As in the previous experiment, we use the PTB

dataset with a vocabulary of 10,000 words. Following TCN’s experimental

set-up [Bai et al., 2018], we use 600-dimensional word embeddings with 0.25

Dropout as input, and use the transpose of the embedding matrix to project the

600-dimensional outputs from the models to probability vectors over all words.

For training, we minimise the average cross-entropy with a patience of P = 5,

and for evaluation we use the per-word perplexity.

Similarly to the results for character-based language modelling in Section

5.3.3.1, Table 5.4 shows that both models perform very similarly, but the Seq-U-

Net architecture is substantially more efficient to train (reducing the training

time by 51% and memory usage by 34%).

Symbolic music modelling For our final comparison with TCN on real-world

data, we model polyphonic music in the symbolic domain. Each music piece is

represented as a piano roll – a binary matrix of size 88×T that indicates which of

the 88 pitches are active at each of the T time frames. For simplicity, we assume

that pitch activations at a given time frame are independent of each other11. Our

11Common in music transcription, e.g. Ycart and Benetos [2018]
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models predicts a whole time-frame at each step in an auto-regressive manner,

and we use the sum of binary cross-entropies over each pitch, averaged over

all time frames as training objective. We use a patience of P = 10 for early

stopping.

Three different datasets of varying complexity and content are used: Muse12,

Nottingham (Nott)13 and the JSB chorales [Allan and Williams, 2005]. For eval-

uation, we use the frame-wise perplexity introduced by Boulanger-Lewandowski

et al. [2012].

Table 5.4 shows the perplexity on the training and test sets for both models

on all datasets. We find that both models are very closely matched in terms

of training and test perplexity on the Muse and JSB datasets. For the Nott

dataset, TCN achieves a noticeably lower perplexity than the Seq-U-Net on the

training partition. This performance gap also appears on the test set, although it

is considerably smaller, indicating that incorporating the slow feature hypothesis

induces a regularising effect on the model.

For these datasets, no improvement in training time is observed, unlike the

previous language modelling experiments. This is due to the much smaller size

of the models, where the higher number of convolutional layers in the Seq-U-Net

has a larger impact than the reduction in computation time for each layer.

Nevertheless, the memory footprint is substantially reduced by an average of

32%.

Copy task Finally, we compared our model to TCN on the copy task, following

the experimental setup outlined by Bai et al. [2018]. The input to the model is

a one-dimensional sequence consisting of 10 integers randomly chosen between 1

and 8, followed by M zeroes, and 11 entries filled with the digit 9, acting as a

signal for the model to output the initial 10-number sequence at the end of the

input sequence.

Using the same setting of M = 1000 used by Bai et al. [2018], we found

that Seq-U-Net was not able to retain the number sequence and output it at

the end (reaching an accuracy of 12.7%), in contrast to TCN. Theoretically,

this can be explained by the resampling operations contained in the Seq-U-Net,

through which the number sequence needs to be transported. Neighbouring

elements (feature vectors) of the sequence need to be encoded into a single feature

vector so that subsequent downsampling of this sequence of feature vectors does

not result in information loss. Similarly, even if the information successfully

passes through all downsampling layers, the original sequence has to be decoded

in the upsampling path. Both of these operations would require very specific

12See http://www-etud.iro.umontreal.ca/~boulanni/icml2012
13See http://ifdo.ca/~seymour/nottingham/nottingham.html
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Model Layers Features Context Filter width

Wavenet 13 128 32764 2
Seq-U-Net 11 180 32748 5

Table 5.5: Models used for audio generation. Context is given as a number of
audio samples.

configurations of the convolutional filters to be successful. In other words, the

Seq-U-Net is built to retain low-frequency features over a large amount of steps,

but the number sequence represents high-frequency information. However, it

seems that retaining such high-frequency information over large numbers of

time-steps is rarely needed in many real-world applications, since Seq-U-Net

performs well on all real-world benchmarks presented here.

5.3.3.2 Raw audio generation

To test whether our model can capture long-term dependencies found in complex

real-world sequences, we apply it to the generation of audio waveforms, using the

residual variant presented in Section 5.3.1.2. Since our architecture resembles

the Wavenet with its use of stacks of residual convolutions, we use it as our

comparison model in the following.

In particular, we use the classical piano recordings as used by Dieleman

et al. [2018] amounting to about 607 hours in duration, and partition them

into a training and test set, while avoiding pieces overlapping between the two

partitions. Note that our version of the dataset is different as we were not able

to obtain all the recordings listed by Dieleman et al. [2018].

We train two models in this experiment, listed in Table 5.5. The first one is

a Wavenet baseline comprised of 4 Wavenet stacks with 13 dilated convolutional

layers each and 512 features in the skip connection, and the second one is a

Seq-U-Net model that matches the Wavenet in terms of receptive field size, and

uses a residual depth of D = 2.

Besides downsampling the audio to 16 KHz mono signals, no further pre-

processing is applied. During training, audio excerpts are loaded from random

positions within the audio files, and each audio sample is transformed into

a 256-dimensional one-hot vector using 8-bit mu-law encoding, following the

Wavenet approach [van den Oord et al., 2016]. A training batch consists of 16

examples and uses the last 5000 audio samples in each example as simultaneous

training targets for the model. The average cross-entropy is minimised over

246000 iterations (equivalent to just over one epoch) with an Adam optimiser

and a learning rate of 0.0005.
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Figure 5.7: Results of the listening test, showing the overall distribution of
responses for both the timbre and the musical coherence questions

Experimental setup For evaluation, we report the likelihood of the models

in bits per audio samples (bpa) on the test set. However, the bpa metric might

not reflect perceptual audio quality very well, especially since the model uses its

own predictions as input and not real samples at test time. This discrepancy is

well known in the literature [Huszár, 2015], and we also found in practice that the

two models vary in their stability at generation time. While the Wavenet starts

to introduce progressively more noise into its outputs with longer generation,

the Seq-U-Net appears stable throughout. Since this effect is very pronounced

with durations of 10 seconds or longer, making Seq-U-Net clearly preferable, we

conducted a listening test with samples of 5 seconds. We used a temperature

of 0.95, meaning the unnormalised model outputs were divided by 0.95 before

applying the softmax to obtain probabilities. In preliminary experiments, we

found this stabilises the generation process, resulting in increased quality for

both models.

Each of the 20 questions presented the participant with a 1.5 second excerpt

of real piano randomly sampled from our test dataset. This was followed by two

continuations produced by our two models that also include the real excerpt in

the beginning. This conditional generation setting allows directly comparing

between outputs of different models for the same input context: The participants

were asked which excerpt has “better timbre (does it sound like a piano, is

the audio free of distortions?)” and “more musical coherence (with respect to

melody, harmony, rhythm)”. An additional “Not sure” option was available

when the participant thinks the quality is the same for both excerpts. The total

number of participants is 22, with the majority being between the ages of 25

and 40. We did not select for specific levels of musical training.

Results As seen in Table 5.4, the Wavenet slightly outperforms the Seq-U-Net

in terms of the bpa metric, albeit achieving a small relative improvement of

2.6% on the test set, indicating the models are closely matched in terms of

performance. The training set results indicate this might be due to the Wavenet
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Task Model W L H Drop. Context Params P LR Clip

Char-LM TCN 3 4 600 0.1 80 5.9M 5 0.00014 0.213
Char-LM Seq-U-Net 3 4 390 0.1 73 5.9M 5 0.00073 No

Word-LM TCN 3 4 600 0.5 73 14.7M 5 0.00115 No
Word-LM Seq-U-Net 3 4 390 0.5 73 14.9M 5 0.00037 0.722

M-Muse TCN 5 4 215 0.2 Full 1.7M 10 0.00023 No
M-Muse Seq-U-Net 5 4 150 0.2 Full 1.7M 10 0.00047 No

M-Nott TCN 5 4 215 0.2 Full 1.7M 10 0.000067 0.601
M-Nott Seq-U-Net 5 4 150 0.2 Full 1.7M 10 0.00108 No

M-JSB TCN 3 2 220 0.5 Full 534k 10 0.00134 No
M-JSB Seq-U-Net 3 2 170 0.5 Full 522k 10 0.00051 0.324

Table 5.6: Hyper-parameters used for TCN and Seq-U-Net comparisons. W the
convolutional filter width, L the number of layers, H the number of filters in each
convolutional layer and P is the patience for early stopping. LR and Clip are
the best learning rate and clipping magnitude found through hyper-parameter
optimisation.

fitting the training set more closely in the given number of training iterations.

At the same time, the required training time and memory are drastically reduced

for the Seq-U-Net by factors of 4 and 3.5, respectively.

The results of the listening test are shown in Figure 5.7. While the Seq-U-

Net exhibits better timbral characteristics than the Wavenet, it falls behind in

terms of musical coherence. We suspect this is due to the Seq-U-Net sometimes

producing an unexpected transition from the real excerpt to the generated

section, but then producing sounds more stably as time goes on. Overall, the

two models appear to have different strengths and weaknesses. Additionally,

the high amount of “Not sure” responses, especially for such a sensitive paired

discrimination task, indicates that the models are quite evenly matched in this

setting.

Finally, we measure the performance impact of our inference method intro-

duced in Section 5.3.1.1 by comparing to the Wavenet’s generation speed when

caching previous activations. With a batch size of 1 on a single NVIDIA GTX

1080 GPU, we achieve 69 audio samples per second for the Wavenet, and 309

for the Seq-U-Net and thereby a speed-up with a factor greater than 4.

5.3.4 Discussion and conclusion

The predictive performance of the Seq-U-Net as outlined in Table 5.4 is remark-

ably similar to that of Wavenet and TCN comparison models across all tasks we

tested. While efficiency gains are not very noticeable for very small instances

of our model with few levels of resolution, they rapidly increase when moving

towards larger and deeper models as used in language and audio modelling, and
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we can expect these gains to become more pronounced for even deeper models

with even longer receptive fields.

Since the metrics used in Table 5.4 are based on how much probability the

models assign to the test data (log-likelihood) and not directly on how realistic

their generated output is, we performed a listening test for the piano audio

generation task. Surprisingly, despite better log-likelihood, our implementation

of the Wavenet accumulates noise during generation, making it unsuitable to

generate longer music pieces, whereas the Seq-U-Net is stable but less capable

of smoothly continuing the real excerpts, for reasons that remain unclear. A

more unified approach to training and evaluating generative models would be

desirable, so models can be more directly adapted for stability during generation

time, instead of relying on architecture choices alone to ensure stability.

We demonstrated how a causal variant of a U-Net architecture with one-

dimensional convolutions across the time domain can perform on par with existing

state-of-the-art models in a variety of real-world sequence modelling tasks, while

significantly reducing training time and memory requirements. Leveraging

the idea that many relevant features in real-world sequences are only slowly

varying over time allows the use of convolutional layers that compute features

at progressively lower resolutions. These efficiency gains make it feasible to

train generative models with much longer receptive fields in the future, which

can be very useful in domains such as music and language generation. While

results on the synthetic copy task show that high-frequency information can not

be retained over large numbers of time steps, the competitive performance of

our model on real-world benchmarks suggests that only modelling long-term

dependencies between “slow features” might be sufficient – although this should

be investigated further in the future.

A limitation of our approach is that the levels of resolution along with the

processing capacity at each resolution has to be manually pre-defined, which

could limit performance. Future work could include potential solutions as used

in the Phased LSTM [Neil et al., 2016] so the model can adapt its levels of

resolution more dynamically to the task.

Finally, attention mechanisms have shown great potential for sequence mod-

elling and could be integrated into our approach by using attention operations in

each down- and upsampling block alongside or instead of convolutions to further

improve performance, as suggested by Child et al. [2019].

5.4 Conclusion

In this Section, we developed end-to-end models for processing high-dimensional

input sequences. A key challenge for these models is computational efficiency,
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as sequences are very high-dimensional in some domains, such as audio signals

encountered in machine listening. Our solution is based on the slow feature

hypothesis – we use a CNN architecture where different layers operate on different

resolutions, creating a feature hierarchy where many layers output features at a

much lower resolution than that of the input, saving memory and computation

time.

This approach can be applied to non-causal (“offline”) prediction, where the

whole input sequence can be used to predict the output sequence, giving rise

to Wave-U-Net as described in Section 5.2. It can also be straightforwardly

extended to the causal (“online”) setting, where elements in the output sequence

are predicted based only on the input elements observed so far. The resulting

Seq-U-Net presented in Section 5.3 can be used for auto-regressive generative

modelling, such as music generation using the raw waveform.

These end-to-end models can be combined with powerful, data-driven ap-

proaches to incorporate model priors, some of which we proposed in Sections 3

and 4, to obtain good generalisation even when not much labelled data or ex-

plicit prior knowledge is available. Additionally, when large amounts of labelled

data are available, our proposed models can allow for better scalability and

performance for machine listening tasks since they can flexibly learn feature

representations directly from raw audio. In contrast, current machine listening

models make use of fixed spectrogram representations and reductive features

such as Mel-frequency cepstral or chroma coefficients that risk discarding a lot

of relevant information in the input, thereby limiting performance.
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Chapter 6

Conclusions and further

work

6.1 Summary of contributions

The goal in this thesis is to build machine listening models that generalise well

on tasks with only a small amount of annotated data. To this end, we developed

approaches that add powerful, data-driven regularisation terms to the model’s

training objective and that make use of additional related datasets, which are

often available in practice.

In Chapter 3, we developed a novel framework based on adversarial learning

that allows incorporating additional types of datasets into training. These

datasets may contain only a subset of all features used by the model. We applied

this technique in the context of image-to-image translation as well as audio source

separation, where additional datasets comprised of individual input or output

samples are often available that can not be used in a traditional supervised

learning framework. In our experiments, this leads to performance increases

over baseline models that are not able to make use of the additional data.

Furthermore, we retain the adversarial learning framework, as our adaptation

subdivides the discriminator network so that overall it estimates the same density

ratio as the discriminator in the original GAN [Goodfellow et al., 2014], allowing

us to keep generator training unchanged.

As our second main contribution, we investigated methods to exploit the

similarity between machine listening tasks in Chapter 4, focusing on music infor-

mation retrieval tasks in particular. In an initial study in Section 4.2, we found

that employing a simple multi-task learning approach to simultaneously detect

and separate the singing voice in music mixtures results in better performance
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than training separate models for each of the two tasks. Expanding on this first

experiment that involved only two tasks, we present a meta-learning approach

in Section 4.3 that aims to find a parameter initialisation of a base network that

leads to good performance on a given task after a small amount of task-specific

training, for which we use a total of ten MIR tasks. While model performance

sometimes degrades compared to simply training the model from scratch on the

task of interest, in other cases we observe an impressive performance increase,

suggesting that the shared structure between MIR tasks is encoded into the

initial parameters so it can be successfully exploited by the model. This this

initial exploration is particularly valuable as it can inform future work in this

under-explored area, for example with regards to the steps needed to obtain

more consistent performance improvements.

Finally, we help pave the way towards more end-to-end machine listening

models that can be flexibly combined with data-driven model priors such as the

ones presented in this thesis, thereby avoiding cumbersome and non-scalable

feature preprocessing. In particular, we presented two CNNs – the non-causal

“Wave-U-Net” model that we successfully applied to music source separation in

Section 5.2, and the causal “Seq-U-Net” variant which is applied to generation

tasks such as audio and music score generation in Section 5.3. By processing

the raw audio waveform directly, Wave-U-Net takes a novel approach in the

context of audio source separation and demonstrates it is competitive with

spectrogram-based approaches. To mitigate the computational challenges for

these models due to their high-dimensional input, we exploit the fact that many

features of interest only change slowly relative to the input’s sampling frequency

by reducing the resolution of the convolutional layers. As a result, our models

require less memory and computation time than comparable state-of-the-art

approaches, such as Wavenet and TCN. In contrast to such models, which apply

the same operation at each time-step during inference (time-invariant systems),

Seq-U-Net performs different computations at different time-steps due to its

down- and upsampling. Given the success of the Seq-U-Net, further exploration

of time-varying systems might yield additional improvements in the future.

In summary, we presented a set of approaches that allows machine listening

models to more flexibly process different types of data to avoid overfitting to

potentially small datasets that are specifically annotated for the task at hand.

These techniques are especially useful since the performance of DL models

scales well with increasing training set sizes. To combat long training times

and prohibitive memory usage that are exacerbated by large-scale training, we

further developed architectural improvements to end-to-end models. Some of

the proposed techniques are applicable beyond machine listening – most notably,

model training in the face of certain missing data scenarios as shown in Chapter 3.
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6.2 Future work

In this thesis, we focused on leveraging datasets of similar tasks and integrating

incomplete datasets as a means of improving model generalisation. Using unla-

belled data is another promising avenue for imbuing machine listening models

with additional prior knowledge, especially since unlabelled audio data is often

available in much larger quantities than audio data labelled for the task at

hand. Inspiration could come from related areas that recently achieved immense

successes using various pre-training approaches, such as natural language process-

ing [Devlin et al., 2019] and computer vision [Chen et al., 2020]. In particular,

auto-regressive sequence modelling as discussed in Section 2.6 appears to be

a powerful pre-training objective – many relevant features are discovered by

the model in an effort to predict future elements of a sequence given previous

ones. This principle could be applied to the audio domain as well due to its

time-dependent nature.

The adversarial learning framework we developed in Section 3.3 uses the

standard GAN framework by Goodfellow et al. [2014], but employs additional

regularisation on the discriminators in the form of spectral normalisation [Miyato

et al., 2018] to stabilise training. Recently, more stable GAN variants such

as the Wasserstein GAN [Arjovsky et al., 2017] were proposed that do not

involve estimating probability density ratios and so do not allow manipulating

probabilities in the same way we required to establish our framework. Therefore,

it would be desirable to extend the framework to other GAN formulations as well.

Factorising discriminators enables incorporating more prior knowledge into the

design of neural architectures in GANs, which could improve empirical results in

applied domains. The presented factorisation is generally applicable independent

of model choice, so it can be readily integrated into many existing GAN-based

approaches. Since the joint density can be factorised in different ways, multiple

extensions are conceivable depending on the particular application (as shown in

Section 3.3.3).

To expand on the studies from Section 4.3, meta learning could be used

more specifically for few-shot learning, i.e., generalising from extremely few

examples in only a few SGD update steps. Datasets could be extended to include

a protocol defining a set of sub-tasks to establish a task distribution to use

during meta learning, as well as a set of separate test tasks to enable comparison

between approaches. For example, genre detection could be phrased as a few-shot

problem where genres have to be recognised after training on a dataset with

only very few music pieces per genre label. Overall, this could lead to more

flexible machine listening models that do not rely on a fixed set of classes or

circumstances, but can adapt quickly to new information.
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To compare models capable of performing a wide variety of MIR tasks, a

standardised multi-task benchmark for MIR should be established, similarly to

the SuperGLUE benchmark found in natural language processing [Wang et al.,

2019]. This would not only enable more accurate comparisons between such mod-

els but likely also spur more research in this area since it is more straightforward

to compare new approaches with the state-of-the-art. Successively adding more

MIR tasks and datasets into such a task collection would be very important

for stable training and rigorous evaluation of meta- and multi-task learning

approaches. With a larger set of training tasks, such approaches are much less

likely to overfit to a particular set of tasks and more likely to generalise to

new, unseen tasks – just as model generalisation improves when adding more

data points to the training data, “meta-generalisation” improves with more

training tasks, since a training task represents an individual data point in a

“task dataset”. Additionally, with more test tasks, the final performance on an

unseen task can be estimated with higher precision, enabling a more rigorous

evaluation.

Lastly, the sequence models proposed in Chapter 5 can be improved in

various ways and analysed further. A limitation of our approach is that the levels

of resolution along with the processing capacity at each resolution has to be

manually pre-defined, which could limit performance. Future work could include

potential solutions as used in the Phased LSTM [Neil et al., 2016] so the model

can adapt its levels of resolution more dynamically to the task. To understand

the inner workings of our models in more detail, one could investigate to which

extent our models perform a spectral analysis for a given audio waveform, and

how to incorporate computations similar to those in a multi-scale filterbank.

For separation in the case of Wave-U-Net, one could also explicitly compute

a decomposition of the input signal into a hierarchical set of basis signals and

weightings on which to perform the separation, similar to the TasNet [Luo and

Mesgarani, 2017]. Future work could also focus on improving the architecture

of the down- and upsampling blocks. Attention mechanisms have shown great

potential for sequence modelling and could be integrated into our approach by

using attention operations in each down- and upsampling block alongside or

instead of convolutions to further improve performance, as suggested by Child

et al. [2019].

Seq-U-Net performs competitively on real-world benchmarks, while results on

the synthetic copy task show that it can not retain high-frequency information

over large numbers of time steps. This suggests only modelling long-term depen-

dencies between “slow features” might be sufficient to achieve good performance

in many application scenarios – although this should be investigated further in

the future.
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With the proliferation of end-to-end architectures for machine listening such

as Wavenet and Wave-U-Net, research could also investigate suitable loss func-

tions for such models that directly generate raw audio. For prediction tasks, we

hypothesise that simple losses such as L1 and L2 losses reflect human perception

relatively well when used to compare model predictions to targets in the spectro-

gram domain, but not when applying the same losses directly in the time domain.

For example, if the model outputs an audio signal that is exactly identical to

the target signal but has opposite phase, the resulting error will be large despite

a negligible perceptual difference. Generative adversarial networks [Goodfellow

et al., 2014, Stoller et al., 2018b] could be investigated in this context, since their

error is dependent on a separate discriminator network that aims to distinguish

model output and target. They also represent a possible approach for generating

audio directly in the time domain. Alternatively, spectrogram-based losses could

be integrated into models with raw waveform outputs by computing spectrogram

representations of model output and target waveform, computing the desired

loss in the spectrogram domain, and then backpropagating the gradient of the

loss through the spectrogram computation operation.

In this thesis, we developed methods to integrate additionally available data

of various kinds into the training process of DNNs to increase their generalisation

capability, and demonstrated performance improvements in various MIR tasks

such as audio source separation and singing voice detection. These advances

will hopefully lay the groundwork for a new era of MIR, in which DNNs are

efficiently regularised through data-driven priors similar to the ones we proposed,

to obtain good generalisation for a large number of different tasks despite having

only few labelled training data. Instead of training models from scratch (i.e. a

random initialisation of parameters), we hope our initial studies on pre-training

models (in our case, through meta-learning) will spur further research in this

direction so that starting with a pre-trained model and then fine-tuning it to the

task of interest will be the new default. This will not only improve generalisation

performance, but is also more time and energy efficient due to the low amount of

task-specific training required. Most current research in DL for audio and music

signals spends immense efforts on designing task-specific DNN architectures. In

this context, we believe that our Wave-U-Net and Seq-U-Net models proposed

in Chapter 5 present a substantial step towards more general DNN architectures.

For example, the Wave-U-Net was also trained to successfully perform speech

enchancement [Macartney and Weyde, 2018] and slightly adapted to perform

lyrics alignment [Stoller et al., 2019], while the Seq-U-Net was tested across

several different tasks in Section 5.3. Obtaining such more generally applicable

DNN architectures not only saves time otherwise needed for architecture design,

but also provides us with models that could be trained to perform a variety of
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different tasks with only little adaptation of the network architecture parameters,

using meta-learning, self-supervised learning and other approaches discussed in

this thesis.
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Appendix A

Loss function derivation for

joint SVS and SVD

In this appendix, we will theoretically derive a probabilistically grounded loss

function for the problem of joint singing voice detection and separation.

Let m be the input spectrogram to the model represented as a vector of

dimensionality T · F , where T is the number of time frames, and F is the

number of frequency bins in the spectrogram. Let s describe the combination

of an accompaniment and voice source spectrogram excerpt with a vector of

dimensionality d = 2 · T · F . Furthermore, let o ∈ {0, 1}T be a binary vector of

dimensionality T describing vocal activity labels at each time frame of an audio

excerpt m.

We define a model with parameters φ that yields the probability distribution

pφ(s, o|m) mapping mixtures to accompaniment and vocal tracks and predict

vocal activity. Following the Multi-Task learning principle, the model internally

calculates a hidden representation so that the outputs become independent of each

other under this hidden representation: pφ(s, o|m) = pφ(s|h) · pφ(o|h) · pφ(h|m).

We will focus on a deterministic prediction of h using a function fhφ : m→ h.

We now consider the overall joint probability pφ(m,h, s, o), viewing our model

as a data generator that we can train according to Maximum Likelihood. Since

we always condition on the mixture input m, we set p(m) to the true distribution

of mixtures so that our model always predicts based on real mixture inputs which

are not modeled itself. Therefore, we can decompose the joint probability as

pφ(m,h, s, o) = pD(m) · pφ(s, o|m), where pD is the empirical data distribution,

and our parameters only model the conditional likelihood.

Now assume we have a multi-track dataset and mixtures with vocal activity

labels available with N and M observations, respectively. Applying the principle
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of Maximum likelihood for a generative model with missing data, we can define

the following log-likelihood function:

Lφ =

N∑
i=1

log pφ(si,mi) +

M∑
j=1

log pφ(oj ,mj) (A.1)

We compute the above marginal probabilities by marginalising out the

respectively missing variables. For the first term, this means

log pφ(s,m) = log

∫
h

∑
o

p(m)pφ(s, o|m)dh

= log pD(m) + log

∫
h

∑
o

[pφ(s|h) · pφ(o|h) · pφ(h|m)]dh

∝φ log

∫
h

[pφ(s|h)pφ(h|m)]dh

≈ log pφ(s|fhφ (m))

:= logN (s|fsφ(fhφ (mi)), σ
2Id)

(A.2)

Integration and summation over h and o respectively occurs over all its

dimensions. Note that the dependency on o disappears, since we integrate p(o|h)

over all o. In the second last line, the sampling over h is replaced by the output

of the deterministic function fhφ . In the last line, we further define the output

likelihood over the joint sources as a normal distribution with a mean given

as output of our model, and a learnable scalar σ2 as isotropic variance in each

dimension. Id denotes the d× d identity matrix.

For the likelihood of mixtures with vocal activity labels pφ(o,m), we can

make similar simplifications. Firstly, we set the probability of a vocal activity

curve to be equal to the product of probabilities at each time step t:

pφ(o,m) =

T∏
t=1

pφ(ot,m)

⇒ log pφ(o,m) =

T∑
t=1

log pφ(ot,m)

(A.3)

Then, we compute log pφ(ot,m) as follows:
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log pφ(ot,m) ∝φ log

∫
h

[pφ(ot|h)pφ(h|m)]dh

≈ log pφ(ot|fhφ (m))

= ot · log σ(foφ(fhφ (m))) + (1− ot) · log(1− σ(foφ(fhφ (m))))

= −H(ot, σ(foφ(fhφ (m)))

(A.4)

The binary cross-entropy is denoted by H. When defining pφ(ot|m) to be

σ(foφ(fhφ (m))) with σ as sigmoid function, we arrive at minimising the binary

cross-entropy between label ot and prediction at each time step t.

We combine the above terms for separation predictions with a Normal

likelihood from (A.2) and the binary cross-entropy terms from (A.4) to determine

the log-likelihood from (A.1) on the combined data:

Lφ =

N∑
i=1

log pφ(si,mi) +

M∑
j=1

T∑
t=1

log pφ(oj ,mj)

∝φ
N∑
i=1

logN (s|fsφ(fhφ (mi)), σ
2Id)−

M∑
j=1

T∑
t=1

H(otj , σ(foφ(fhφ (mj))))

∝φ
N∑
i=1

(− 1

2σ2
||si − fsφ(mi)||2 − d log σ)−

M∑
j=1

T∑
t=1

H(otj , σ(foφ(fhφ (mj))))

= − 1

2σ2

N∑
i=1

||si − fsφ(mi)||2 −Nd log σ −
M∑
j=1

T∑
t=1

H(otj , σ(foφ(fhφ (mj))))

(A.5)

Note that we include σ2 as a learnable parameter so we cannot further simplify

from here.

One issue with directly using this loss function for training is the scaling.

With more data points (larger N and M), or with a larger dimensionality d of

the source output space, the loss varies more, since we have more summands in

the former case and more summation over quadratic differences in the latter case.

When using the loss for stochastic gradient descent, this means that the size of

gradients varies strongly depending on the usage scenario, which can impede

learning. To make the loss independent of dataset size and dimensionality of the

source output, we divide by N +M and d:
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L̂φ :=
Lφ

(N +M)d
=

− 1

2σ2(N +M)

N∑
i=1

MSE(si, f
s
φ(fhφ (mi)))

− N

N +M
log σ

− 1

2F

1

N +M

M∑
j=1

1

T

T∑
t=1

H(otj , σ(foφ(fhφ (mj))))

(A.6)

MSE defines the mean squared error between source ground truth and prediction.

Due to division by d = 2TF , the cross-entropy term for each sample mi can now

be seen as the average over the cross-entropy terms for each vocal activity label

ot.

We can write the naive loss combining MSE and average cross-entropy, as

used in the main paper, as

I = α
1

N

N∑
i=1

MSE(si, f
s
φ(fhφ (mi))) + (1− α)

1

M

M∑
j=1

1

T

T∑
t=1

H(otj , σ(foφ(fhφ (mj))))

(A.7)

We observe that maximising our scaled log-likelihood from (A.6) is equivalent

to minimising the naive loss, when fixing the variance parameter σ2 and the

weighting α to a specific value:

L̂φ = −I − N

N +M
log σ if

α =
1

2σ2

N

N +M
and

1− α =
1

2F

M

N +M
so that

σ2 =
FN

2FN + 2MF −M

(A.8)

Although our log-likelihood function is theoretically more satisfying as it

avoids a hyper-parameter and naturally accounts for a different amount of

samples in both datasets, empirically we did not achieve better performance

using this loss. A reason might be the learning dynamics of an ADAM optimiser

on a neural network combined with the loss scaling: As the learnable variance σ

decreases during training, the loss grows in size and variance far beyond that of

the naive loss, which might mean lower learning rates are needed. This should

be investigated further.
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Sebastian Böck, Florian Krebs, and Gerhard Widmer. Joint beat and downbeat

tracking with recurrent neural networks. In Proc. of the International Society

for Music Information Retrieval Conference (ISMIR), pages 255–261, 2016.

Dmitry Bogdanov, Minz Won, Philip Tovstogan, Alastair Porter, and Xavier

Serra. The MTG-Jamendo dataset for automatic music tagging. In Machine

Learning for Music Discovery Workshop at the International Conference on

Machine Learning (ICML 2019), Long Beach, CA, United States, June 2019.

Nicolas Boulanger-Lewandowski, Yoshua Bengio, and Pascal Vincent. Mod-

eling temporal dependencies in high-dimensional sequences: Application to

polyphonic music generation and transcription. Proc. of the International

Conference on Machine Learning (ICML), pages 1159–1166, 2012.

Philemon Brakel and Yoshua Bengio. Learning Independent Features with

Adversarial Nets for Non-linear ICA. CoRR, abs/1710.05050, 2017.

Andrew Brock, Jeff Donahue, and Karen Simonyan. Large Scale GAN Training

for High Fidelity Natural Image Synthesis. CoRR, abs/1809.11096, 2019.

142



Victor Campos, Brendan Jou, Xavier Giro-i-Nieto, Jordi Torres, and Shih-Fu

Chang. Skip RNN: Learning to skip state updates in recurrent neural networks.

CoRR, abs/1708.06834, 2017.

Rich Caruana. Multitask Learning. In Sebastian Thrun and Lorien Pratt,

editors, Learning to Learn, pages 95–133. Springer US, Boston, MA, 1998.

ISBN 978-1-4615-5529-2.

A Taylan Cemgil, Cédric Févotte, and Simon J Godsill. Variational and stochastic

inference for Bayesian source separation. Digital Signal Processing, 17(5):891–

913, 2007.

Tak-Shing Chan, Tzu-Chun Yeh, Zhe-Cheng Fan, Hung-Wei Chen, Li Su, Yi-

Hsuan Yang, and Roger Jang. Vocal activity informed singing voice separation

with the iKala dataset. In Proc. of the IEEE International Conference on

Acoustics, Speech and Signal Processing (ICASSP), pages 718–722. IEEE,

2015.

Shiyu Chang, Yang Zhang, Wei Han, Mo Yu, Xiaoxiao Guo, Wei Tan, Xiaodong

Cui, Michael Witbrock, Mark A Hasegawa-Johnson, and Thomas S Huang.

Dilated Recurrent Neural Networks. In I. Guyon, U. V. Luxburg, S. Bengio,

H. Wallach, R. Fergus, S. Vishwanathan, and R. Garnett, editors, Advances

in Neural Information Processing Systems 30, pages 77–87. Curran Associates,

Inc., 2017.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and Geoffrey Hinton. A

Simple Framework for Contrastive Learning of Visual Representations. CoRR,

abs/2002.05709, 2020.

Tsung-Ping Chen, Li Su, et al. Functional harmony recognition of symbolic music

data with multi-task recurrent neural networks. In Proc. of the International

Society for Music Information Retrieval Conference (ISMIR), pages 90–97,

2018.

Bhusan Chettri, Daniel Stoller, Veronica Morfi, Marco A. Mart́ınez Ramı́rez,

Emmanouil Benetos, and Bob L. Sturm. Ensemble models for spoofing

detection in automatic speaker verification. In Proceedings of INTERSPEECH,

pages 1018–1022, 2019.

Rewon Child, Scott Gray, Alec Radford, and Ilya Sutskever. Generating Long

Sequences with Sparse Transformers. CoRR, abs/1904.10509, 2019.

Kyunghyun Cho, Bart van Merrienboer, Caglar Gulcehre, Dzmitry Bahdanau,

Fethi Bougares, Holger Schwenk, and Yoshua Bengio. Learning Phrase Repre-

143



sentations using RNN Encoder-Decoder for Statistical Machine Translation.

abs/1406.1078, CoRR, 2014.

Keunwoo Choi, György Fazekas, Mark Sandler, and Kyunghyun Cho. Transfer

learning for music classification and regression tasks. In Proc. of the Interna-

tional Society for Music Information Retrieval Conference (ISMIR), volume 18,

pages 141–149, 2018.

Jan Chorowski, Ron J. Weiss, Samy Bengio, and Aäron van den Oord. Unsuper-
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Haşim Sak, Andrew Senior, Kanishka Rao, Ozan Irsoy, Alex Graves, Françoise

Beaufays, and Johan Schalkwyk. Learning acoustic frame labeling for speech

recognition with recurrent neural networks. In Proc. of the IEEE International

Conference on Acoustics, Speech and Signal Processing (ICASSP), pages 4280–

4284, 2015.
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