High-Fidelity Image Generation With Fewer Labels

Venue

arXiv:1903.02271 [cs, stat], vol.

Publication Year

2019

Keywords

Statistics - Machine Learning,Computer Science - Machine Learning,Computer Science - Computer Vision and Pattern Recognition

Authors

  • Mario Lucic
  • Michael Tschannen
  • Marvin Ritter
  • Xiaohua Zhai
  • Olivier Bachem
  • Sylvain Gelly

Abstract

Deep generative models are becoming a cornerstone of modern machine learning. Recent work on conditional generative adversarial networks has shown that learning complex, high-dimensional distributions over natural images is within reach. While the latest models are able to generate high-fidelity, diverse natural images at high resolution, they rely on a vast quantity of labeled data. In this work we demonstrate how one can benefit from recent work on self- and semi-supervised learning to outperform state-of-the-art (SOTA) on both unsupervised ImageNet synthesis, as well as in the conditional setting. In particular, the proposed approach is able to match the sample quality (as measured by FID) of the current state-of-the art conditional model BigGAN on ImageNet using only 10% of the labels and outperform it using 20% of the labels.