Learning to Discover Cross-Domain Relations with Generative Adversarial Networks


Proc. of the International Conference on Machine Learning (ICML), pp. 1857–1865

Publication Year


  • Taeksoo Kim
  • Moonsu Cha
  • Hyunsoo Kim
  • Jung Kwon Lee
  • Jiwon Kim


While humans easily recognize relations between data from different domains without any supervision, learning to automatically discover them is in general very challenging and needs many ground-truth pairs that illustrate the relations. To avoid costly pairing, we address the task of discovering cross-domain relations given unpaired data. We propose a method based on a generative adversarial network that learns to discover relations between different domains (DiscoGAN). Using the discovered relations, our proposed network successfully transfers style from one domain to another while preserving key attributes such as orientation and face identity.